Investigation of a >6-km-thick succession of Cretaceous to Cenozoic sedimentary rocks in the Tajik Basin reveals that this depocentre consists of three stacked basin systems that are interpreted to reflect different mechanisms of subsidence associated with tectonics in the Pamir Mountains: a Lower to mid-Cretaceous succession, an Upper Cretaceous-Lower Eocene succession and an Eocene-Neogene succession. The Lower to mid-Cretaceous succession consists of fluvial deposits that were primarily derived from the Triassic Karakul-Mazar subduction-accretion complex in the northern Pamir. This succession is characterized by a convex-up (accelerating) subsidence curve, thickens towards the Pamir and is interpreted as a retroarc foreland basin system associated with northward subduction of Tethyan oceanic lithosphere. The Upper Cretaceous to early Eocene succession consists of fine-grained, marginal marine and sabkha deposits. The succession is characterized by a concave-up subsidence curve. Regionally extensive limestone beds in the succession are consistent with late stage thermal relaxation and relative sea-level rise following lithospheric extension, potentially in response to Tethyan slab rollback/foundering. The Upper Cretaceous-early Eocene succession is capped by a middle Eocene to early Oligocene (ca. 50-30 Ma) disconformity, which is interpreted to record the passage of a flexural forebulge. The disconformity is represented by a depositional hiatus, which is 10-30 Myr younger than estimates for the initiation of India-Asia collision and overlaps in age with the start of prograde metamorphism recorded in the Pamir gneiss domes. Overlying the disconformity, a >4-km-thick upper Eocene-Neogene succession displays a classic, coarsening upward unroofing sequence characterized by accelerating subsidence, which is interpreted as a retro-foreland basin associated with crustal thickening of the Pamir during India-Asia collision. Thus, the Tajik Basin provides an example of a long-lived composite basin in a retrowedge position that displays a sensitivity to plate margin processes. Subsidence, sediment accumulation and basin-forming mechanisms are influenced by subduction dynamics, including periods of slab-shallowing and retreat. K E Y W O R D S basin subsidence, foreland basins, geodynamics, stratigraphy, subduction-related basins, tectonics and sedimentation 526 | EAGE CHAPMAN et Al.
The Sardinian Cainozoic rifted basin is a useful model for studying the stratigraphic response to the Oligo-Miocene structural extension in the western Mediterranean because it allows precise observations on the relationship between sedimentation and normal faulting based on outcrops and seismic reflection data. The purpose of this paper, essentially of stratigraphic nature is to propose a chronology as precise as possible of the tectonic events and of the sedimentary formations. Indeed the tectono-sedimentary framework is complex, characterized by an extreme facies variability, from continental to marginal transitional and to marine environments (shallow-water, hemipelagic). Rifting, active calc-alkaline volcanism and sea-level changes caused rapid physiographical evolution, which controlled progressive marine ingression. New chronobiostratigraphical data presented in this paper allow correlating the sequences, defining their environment and depth of deposition and specifying precisely the timing of pre-, syn-, and post-rift stages in the Oligo-Miocene graben system. In southwestern Sardinia during the middle-late Eocene, after the Pyrenean phase, a continental graben (Cixerri), W-E oriented, preceded the Oligo-Miocene extension, which reactivated inherited Eocene and Palaeozoic faults. The calc-alkaline volcanic activity ranging from 32 to 13 Ma, provides a good estimate for the time span of the west-dipping Apenninic subduction responsible for the continental extension and the oceanic accretion in the western Mediterranean. In Sardinia the Oligo-Miocene extensional tectonics started in a continental environment, preceding the earliest calc-alkaline volcanic products (32 Ma). The marine ingression is dated to the late Chattian-Aquitanian interval and corresponds to a rapid deepening of the Oligo-Miocene graben system of tectonic origin. The end of the rifting i.e. the end of normal faulting activity is pre-middle Burdigalian in age. When Sardinia was in the post-rift stage, extension continued until late Burdigalian – Langhian in the Algero-Provençal basin with oceanic accretion and rotation of the Corsica-Sardinia block (CSB).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.