Background Exercise interventions are often incompletely described in reports of clinical trials, hampering evaluation of results and replication and implementation into practice. Objective The aim of this study was to develop a standardized method for reporting exercise programs in clinical trials: the Consensus on Exercise Reporting Template (CERT). Design and Methods Using the EQUATOR Network's methodological framework, 137 exercise experts were invited to participate in a Delphi consensus study. A list of 41 items was identified from a meta-epidemiologic study of 73 systematic reviews of exercise. For each item, participants indicated agreement on an 11-point rating scale. Consensus for item inclusion was defined a priori as greater than 70% agreement of respondents rating an item 7 or above. Three sequential rounds of anonymous online questionnaires and a Delphi workshop were used. Results There were 57 (response rate=42%), 54 (response rate=95%), and 49 (response rate=91%) respondents to rounds 1 through 3, respectively, from 11 countries and a range of disciplines. In round 1, 2 items were excluded; 24 items reached consensus for inclusion (8 items accepted in original format), and 16 items were revised in response to participant suggestions. Of 14 items in round 2, 3 were excluded, 11 reached consensus for inclusion (4 items accepted in original format), and 7 were reworded. Sixteen items were included in round 3, and all items reached greater than 70% consensus for inclusion. Limitations The views of included Delphi panelists may differ from those of experts who declined participation and may not fully represent the views of all exercise experts. Conclusions The CERT, a 16-item checklist developed by an international panel of exercise experts, is designed to improve the reporting of exercise programs in all evaluative study designs and contains 7 categories: materials, provider, delivery, location, dosage, tailoring, and compliance. The CERT will encourage transparency, improve trial interpretation and replication, and facilitate implementation of effective exercise interventions into practice.
Facioscapulohumeral muscular dystrophy (FSHD) is an untreatable disease, characterized by asymmetric progressive weakness of skeletal muscle with fatty infiltration. Although the main genetic defect has been uncovered, the downstream mechanisms causing FSHD are not understood. The objective of this study was to determine natural disease state and progression in muscles of FSHD patients and to establish diagnostic biomarkers by quantitative MRI of fat infiltration and phosphorylated metabolites. MRI was performed at 3T with dedicated coils on legs of 41 patients (28 men/13 women, age 34–76 years), of which eleven were re-examined after four months of usual care. Muscular fat fraction was determined with multi spin-echo and T1 weighted MRI, edema by TIRM and phosphorylated metabolites by 3D 31P MR spectroscopic imaging. Fat fractions were compared to clinical severity, muscle force, age, edema and phosphocreatine (PCr)/ATP. Longitudinal intramuscular fat fraction variation was analyzed by linear regression. Increased intramuscular fat correlated with age (p<0.05), FSHD severity score (p<0.0001), inversely with muscle strength (p<0.0001), and also occurred sub-clinically. Muscles were nearly dichotomously divided in those with high and with low fat fraction, with only 13% having an intermediate fat fraction. The intramuscular fat fraction along the muscle’s length, increased from proximal to distal. This fat gradient was the steepest for intermediate fat infiltrated muscles (0.07±0.01/cm, p<0.001). Leg muscles in this intermediate phase showed a decreased PCr/ATP (p<0.05) and the fastest increase in fatty infiltration over time (0.18±0.15/year, p<0.001), which correlated with initial edema (p<0.01), if present. Thus, in the MR assessment of fat infiltration as biomarker for diseased muscles, the intramuscular fat distribution needs to be taken into account. Our results indicate that healthy individual leg muscles become diseased by entering a progressive phase with distal fat infiltration and altered energy metabolite levels. Fat replacement then relatively rapidly spreads over the whole muscle.
This study provides Class III evidence that, in patients with FSHD type 1 and severe chronic fatigue, AET or CBT reduces the severity of chronic fatigue.
Moderate-intensity strength training in myotonic dystrophy and FSHD and aerobic exercise training in dermatomyositis and polymyositis and myotonic dystrophy type I appear to do no harm, but there is insufficient evidence to conclude that they offer benefit. In mitochondrial myopathy, aerobic exercise combined with strength training appears to be safe and may be effective in increasing submaximal endurance capacity. Limitations in the design of studies in other muscle diseases prevent more general conclusions in these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.