Tumor development is a complex process that relies on interaction and communication between a number of cellular compartments. Much of the mass of a solid tumor is comprised of the stroma which is richly invested with extracellular matrix. Within this matrix are a host of matricellular proteins that regulate the expression and function of a myriad of proteins that regulate tumorigenic processes. One of the processes that is vital to tumor growth and progression is angiogenesis, or the formation of new blood vessels from preexisting vasculature. Within the extracellular matrix are structural proteins, a host of proteases, and resident pro- and antiangiogenic factors that control tumor angiogenesis in a tightly regulated fashion. This paper discusses the role that the extracellular matrix and ECM proteins play in the regulation of tumor angiogenesis.
BackgroundThe phosphatidylinositol 3-kinase–regulated protein kinase, Akt, plays an important role in the initiation and progression of human cancer. Mammalian cells express three Akt isoforms (Akt1–3), which are encoded by distinct genes. Despite sharing a high degree of amino acid identity, phenotypes observed in knockout mice suggest that Akt isoforms are not functionally redundant. The relative contributions of the different Akt isoforms to oncogenesis, and the effect of their deficiencies on tumor development, are not well understood.MethodsHere we demonstrate that Akt isoforms have non-overlapping and sometimes opposing functions in tumor initiation and progression using a viral oncogene-induced mouse model of lung cancer and Akt isoform-specific knockout mice.ResultsAkt1 ablation significantly delays initiation of lung tumor growth, whereas Akt2 deficiency dramatically accelerates tumorigenesis in this mouse model. Ablation of Akt3 had a small, not statistically significant, stimulatory effect on tumor induction and growth by the viral oncogene. Terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling and Ki67 immunostaining of lung tissue sections revealed that the delayed tumor induction in Akt1−/− mice was due to the inhibitory effects of Akt1 ablation on cell growth and survival. Conversely, the accelerated growth rate of lung tumors in Akt2−/− and Akt3−/− mice was due to increased cell proliferation and reduced tumor cell apoptosis. Investigation of Akt signaling in tumors from Akt knockout mice revealed that the lack of Akt1 interrupted the propagation of signaling in tumors to the critical downstream targets, GSK-3α/β and mTOR.ConclusionsThese results demonstrate that the degree of functional redundancy between Akt isoforms in the context of lung tumor initiation is minimal. Given that this mouse model exhibits considerable similarities to human lung cancer, these findings have important implications for the design and use of Akt inhibitors for the treatment of lung cancer.
Enzootic nasal adenocarcinoma (ENA) is a contagious neoplasm of the secretory epithelial cells of the nasal mucosa of sheep and goats. It is associated with the betaretrovirus, enzootic nasal tumor virus (ENTV), but a causative relationship has yet to be demonstrated. In this study, 14-day-old lambs were experimentally infected via nebulization with cell-free tumor filtrates derived from naturally occurring cases of ENA. At 12 weeks post-infection (wpi), one of the five infected lambs developed clinical signs, including continuous nasal discharge and open mouth breathing, and was euthanized. Necropsy revealed the presence of a large bilateral tumor occupying the nasal cavity. At 45 wpi, when the study was terminated, none of the remaining infected sheep showed evidence of tumors either by computed tomography or post-mortem examination. ENTV-1 proviral DNA was detected in the nose, lung, spleen, liver and kidney of the animal with experimentally induced ENA, however there was no evidence of viral protein expression in tissues other than the nose. Density gradient analysis of virus particles purified from the experimentally induced nasal tumor revealed a peak reverse transcriptase (RT) activity at a buoyant density of 1.22 g/mL which was higher than the 1.18 g/mL density of peak RT activity of virus purified from naturally induced ENA. While the 1.22 g/mL fraction contained primarily immature unprocessed virus particles, mature virus particles with a similar morphology to naturally occurring ENA could be identified by electron microscopy. Full-length sequence analysis of the ENTV-1 genome from the experimentally induced tumor revealed very few nucleotide changes relative to the original inoculum with only one conservative amino acid change. Taken together, these results demonstrate that ENTV-1 is associated with transmissible ENA in sheep and that under experimental conditions, lethal tumors are capable of developing in as little as 12 wpi demonstrating the acutely oncogenic nature of this ovine betaretrovirus.
Ovarian cancer remains a significant therapeutic problem and novel, effective therapies are needed. Akt is a serine-threonine kinase that is overexpressed in numerous cancers, including ovarian. Mammalian cells express three Akt isoforms which are encoded by distinct genes. Although there are several Akt inhibitors in clinical trials, most indiscriminately target all isoforms. Current in vitro data and animal knockout experiments suggest that the Akt isoforms may have divergent roles. In this paper, we determined the isoform-specific functions of Akt in ovarian cancer cell proliferation in vitro and in ovarian cancer progression in vivo. For in vitro experiments, murine and human ovarian cancer cells were treated with Akt inhibitors and cell viability was assessed. We used two different in vivo approaches to identify the roles of Akt isoforms in ovarian cancer progression and their influence on the primary tumor and tumor microenvironment. In one experiment, wild-type C57Bl6 mice were orthotopically injected with ID8 cells with stable knockdown of Akt isoforms. In a separate experiment, mice null for Akt 1-3 were orthotopically injected with WT ID8 cells (Figure 1). Our data show that inhibition of Akt1 significantly reduced ovarian cancer cell proliferation and inhibited tumor progression in vivo. Conversely, disruption of Akt2 increased tumor growth. Inhibition of Akt3 had an intermediate phenotype, but also increased growth of ovarian cancer cells. These data suggest that there is minimal redundancy between the Akt isoforms in ovarian cancer progression. These findings have important implications in the design of Akt inhibitors for the effective treatment of ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.