Living and engineered systems rely on the stable coexistence of two interspersed liquid phases. Yet, surface tension drives their complete separation. Here, we show that stable droplets of uniform and tunable size can be produced through arrested phase separation in an elastic matrix. Starting with a cross-linked, elastic polymer network swollen by a solvent mixture, we change the temperature or composition to drive demixing. Droplets nucleate and grow to a stable size that is tunable by the network cross-linking density, the cooling rate, and the composition of the solvent mixture. We discuss thermodynamic and mechanical constraints on the process. In particular, we show that the threshold for macroscopic phase separation is altered by the elasticity of the polymer network, and we highlight the role of correlations between nuclei positions in determining the droplet size and polydispersity. This phenomenon has potential applications ranging from colloid synthesis and structural color to phase separation in biological cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.