Cultivar identification is a primary concern for olive growers, breeders, and scientists. This study was aimed at examining the SSR markers retrieved from the literature and currently used in olive study, in order to select those most effective in characterizing the olive accessions and to make possible the comparison of data obtained by different laboratories. Olive microsatellite profiles were assessed by four independent laboratories, which analyzed 37 pre-selected SSR loci on a set of 21 cultivars. These SSR markers were initially tested for their reproducibility, power of discrimination and number of amplified loci/alleles. Independent segregation was tested for each pair of SSRs in a controlled cross and the allelic error rate was quantified. Some of them were finally selected as the most informative and reliable. Most of the alleles were sequenced and their sizes were determined. Profiles of the reference cultivars and a list of alleles with their sizes obtained by sequencing are reported. Several genetic parameters have been analysed on a larger set of cultivars allowing for a deeper characterization of the selected loci. Results of this study provide a list of recommended markers and protocols for olive genotyping as well as the allelic profile of a set of reference cultivars that would be useful for the establishment of a universal database of olive accessions
The olive (Olea europaea L.) is a typical important perennial crop species for which the genetic determination and even functionality of self‐incompatibility (SI) are still largely unresolved. It is still not known whether SI is under gametophytic or sporophytic genetic control, yet fruit production in orchards depends critically on successful ovule fertilization. We studied the genetic determination of SI in olive in light of recent discoveries in other genera of the Oleaceae family. Using intra‐ and interspecific stigma tests on 89 genotypes representative of species‐wide olive diversity and the compatibility/incompatibility reactions of progeny plants from controlled crosses, we confirmed that O. europaea shares the same homomorphic diallelic self‐incompatibility (DSI) system as the one recently identified in Phillyrea angustifolia and Fraxinus ornus. SI is sporophytic in olive. The incompatibility response differs between the two SI groups in terms of how far pollen tubes grow before growth is arrested within stigma tissues. As a consequence of this DSI system, the chance of cross‐incompatibility between pairs of varieties in an orchard is high (50%) and fruit production may be limited by the availability of compatible pollen. The discovery of the DSI system in O. europaea will undoubtedly offer opportunities to optimize fruit production.
Twelve simple sequence repeat (SSR) loci were used to differentiate among 118 cultivars sampled in several countries of the Mediterranean basin and to analyze the genetic structure of olive cultivar gene pools. The markers were found to have high discrimination power. On average, with a single assay it was possible to discriminate 96% of the pairwise comparisons and, with a combination of 3 loci, virtually all cultivars were distinguished. The SSR markers were also tested for their ability to assign cultivars to their geographic population of origin. A selection of 6 loci was found to maximize assignment accuracy, correctly reallocating up to 75.4% of cultivars to their population of origin. Because of the confusion surrounding the origin of most olive cultivars, their molecular identification and ascertainment of origin will be extremely useful for germplasm management and breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.