Automated driving systems (ADS) have undergone a significant improvement in the last years. ADS and more precisely self-driving cars technologies will change the way we perceive and know the world of transportation systems in terms of user experience, mode choices and business models. The emerging field of Deep Learning (DL) has been successfully applied for the development of innovative ADS solutions. However, the attempt to single out the best deep neural network architecture and tuning its hyperparameters are all expensive processes, both in terms of time and computational resources. In this work, Bayesian optimization (BO) is used to optimize the hyperparameters of a Spatiotemporal-Long Short Term Memory (ST-LSTM) network with the aim to obtain an accurate model for the prediction of the steering angle in a ADS. BO was able to identify, within a limited number of trials, a model—namely BO_ST-LSTM—which resulted, on a public dataset, the most accurate when compared to classical end-to-end driving models.
Automated driving systems (ADS) have undergone a significant improvement in the last years. ADS and more precisely self-driving cars technologies will change the way we perceive and know the word of transportation systems in terms of user experience, mode choices and business models. The emerging field of Deep Learning (DL) has been successfully applied for the development of innovative ADS solutions. However, the attempt to single out the best deep neural network architecture and tuning its hyperparameters are all expensive processes, both in terms of time and computational resources. In this work, Bayesian Optimization (BO) is used to optimize the hyperparameters of a Spatiotemporal-Long Short Term Memory (ST-LSTM) network with the aim to obtain an accurate model for the prediction of the steering angle in a ADS. BO was able to identify, within a limited number of trials, a model -namely BO ST-LSTM -which resulted, on a public dataset, the most accurate when compared to classical end-to-end driving models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.