We explore the process of base-flipping for four central bases, adenine, guanine, cytosine, and thymine, in a deoxyribonucleic acid (DNA) duplex using the energy landscape perspective. NMR imino-proton exchange and fluorescence correlation spectroscopy studies have been used in previous experiments to obtain lifetimes for bases in paired and extrahelical states. However, the difference of almost 4 orders of magnitude in the base-flipping rates obtained by the two methods implies that they are exploring different pathways and possibly different open states. Our results support the previous suggestion that minor groove opening may be favored by distortions in the DNA backbone and reveal links between sequence effects and the direction of opening, i.e., whether the base flips toward the major or the minor groove side. In particular, base flipping along the minor groove pathway was found to align toward the 5′ side of the backbone. We find that bases align toward the 3′ side of the backbone when flipping along the major groove pathway. However, in some cases for cytosine and thymine, the base flipping along the major groove pathway also aligns toward the 5′ side. The sequence effect may be caused by the polar interactions between the flipping-base and its neighboring bases on either of the strands. For guanine flipping toward the minor groove side, we find that the equilibrium constant for opening is large compared to flipping via the major groove. We find that the estimated rates of base opening, and hence the lifetimes of the closed state, obtained for thymine flipping through small and large angles along the major groove differ by 6 orders of magnitude, whereas for thymine flipping through small angles along the minor groove and large angles along the major groove, the rates differ by 3 orders of magnitude.
Phase separation plays an important role in the formation of membraneless compartments within the cell, and intrinsically disordered proteins with low-complexity sequences can drive this compartmentalisation. Various intermolecular forces, such as aromatic-aromatic and cation-aromatic interactions, promote phase separation. However, little is known about how the ability of proteins to phase separate under physiological conditions is encoded in their energy landscapes, and this is the focus of the present investigation. Our results provide a first glimpse into how the energy landscapes of minimal peptides that contain π-π and cation-π interactions differ from the peptides that lack amino acids with such interactions. The peaks in the heat capacity (CV) as a function of temperature report on alternative low-lying conformations that differ significantly in terms of their enthalpic and entropic contributions. The CVanalysis and subsequent quantification of frustration of the energy landscape suggest that the interactions that promote phase separation leads to features (peaks or inflection points) at low temperatures in CV, more features may occur for peptides containing residues with better phase separation propensity and the energy landscape is more frustrated for such peptides. Overall, this work links the features in the underlying single-molecule potential energy landscapes to their collective phase separation behaviour, and identifies quantities (CVand frustration metric) that can be utilised in soft material design.
Amyloid formation is a hallmark of various neurodegenerative disorders. In this contribution, energy landscapes are explored for various hexapeptides that are known to form amyloids. Heat capacity (CV) analysis at low temperature for these hexapeptides reveals that the low energy structures contributing to the first heat capacity feature above a threshold temperature exhibit a variety of backbone conformations for amyloid-forming monomers. The corresponding control sequences do not exhibit such structural polymorphism, as diagnosed via end-to-end distance and a dihedral angle defined for the monomer. A similar heat capacity analysis for dimer conformations obtained using basin-hopping global optimisation shows clear features in end-to-end distance versus dihedral correlation plots, where amyloid-forming sequences exhibit a preference for larger end-to-end distances and larger positive dihedrals. These results hold true for sequences taken from tau, amylin, insulin A chain, a de novo designed peptide, and various control sequences. While there is a little overall correlation between the aggregation propensity and the temperature at which the low-temperature CV feature occurs, further analysis suggests that the amyloid-forming sequences exhibit the key CV feature at a lower temperature compared to control sequences derived from the same protein.
Amyloid formation is a hallmark of various neurodegenerative disorders. In this contribution, energy landscapes are explored for various hexapeptides that are known to form amyloids. Heat capacity (CV) analysis at low temperature for these hexapeptides reveals that the low energy structures contributing to the first heat capacity feature above a threshold temperature exhibit a variety of backbone conformations for amyloid forming monomers. The corresponding control sequences do not exhibit such structural polymorphism, as diagnosed via end-to-end distance and a dihedral angle defined for the monomer. A similar heat capacity analysis for dimer conformations obtained using basin-hopping global optimisation, shows clear features in end-to-end distance versus dihedral correlation plots, where amyloid-forming sequences exhibit a preference for larger end-to-end distances and larger positive dihedrals. These results hold for sequences taken from tau, amylin, insulin A chain, a de-novo designed peptide, and various control sequences. While there is a little overall correlation between the aggregation propensity and the temperature at which the low-temperature CVfeature occurs, further analysis suggests that the amyloid forming sequences exhibit the key CVfeature at a lower temperature compared to control sequences derived from the same protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.