In this paper, we develop an accurate technique via the use of the Adomian decomposition method (ADM) to solve analytically a 2 × 2 systems of partial differential equation that represent balance laws of hyperbolic-elliptic type. We prove that the sequence of iteration obtained by ADM converges strongly to the exact solution by establishing a construction of fixed points. For comparison purposes, we also use the Sinc function methodology to establish a new procedure to solve numerically the same system. It is shown that approximation by Sinc function converges to the exact solution exponentially, also handles changes in type. A numerical example is presented to demonstrate the theoretical results. It is noted that the two methods show the symmetry in the approximate solution. The results obtained by both methods reveal that they are reliable and convenient for solving balance laws where the initial conditions are of the Riemann type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.