The maintenance of a good indoor air quality (IAQ) has been revealed highly required for ensuring comfort and respectable health conditions for home’s residents. Nowadays, the main causes of the homes air quality degradation have been stated to be originated from both indoor and outdoor sources such as gases and/or particles, where their health impacts have been showed to be more hazardous under inadequate ventilation, high temperatures, and high humidity. In the light of the above, investigation of IAQ inside homes seems to be highly recommended. Accordingly, the current research has been aimed to investigate the IAQ in 12 houses located in different parts from Abu Dhabi in United Arab Emirates (UAE) through a regular monitoring of total suspended particles (TSPs), carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (CH2O), and volatile organic compound (VOC) concentrations and some meteorological parameters such as humidity and temperature in side door, kitchen, and bathroom of each selected house. Compared with international standards and with other measured concentrations exhibited in diverse studies around the world, recorded concentrations in different compartments of selected houses have been lower than detection limits and standard values in the case of VOCs and in the case of CO, respectively, indicating that no health risk originates from such pollutants, especially for residents without sensitive problems. On the contrary, registered CH2O and CO2 concentration levels have largely exceeded standard values alerting residents about the potential impact of cooking, fuel combustion, hot water boilers, air conditioning systems, smoking and may be using electronic cigarettes (vaping) while keeping windows and doors closed, causing a bad aeration. In the case of TSP, recorded concentrations have never exceeded 100 µg/m3 in all compartments of 40% of selected houses. However, in the case of houses “3” and “5,” recorded concentrations have been higher than those recorded in houses from Slovakia, indicating the significant impact of outdoor activities in UAE around these houses and to the non-negligible effect of dust event originating from Saharan advection.
The objective of the study was to calculate the carbon footprint of ADU students, studying environmental sciences and environmental health & safety and compared it with the average carbon footprint of UAE. Students' activity, which contributed to the highest emissions of carbon dioxide per year, has been determined. The carbon footprints were calculated using the online carbon footprint calculator, which estimated the CO 2 emissions of each student. The method resulted from different activities like consumption of gas and electricity, transportation, flights, food as well as other different activities are associated with individual's life style. The average carbon footprint of Environmental ADU students after decreasing their emissions was 12.22 tons CO 2 /year, which was 68%, less than the average carbon footprint of UAE (37.8 tons/year). The public transportation, driving friendly cars, eating locally and living in a simply sustainable life style are great solutions to reduce an individual carbon footprint.
Arabian Gulf water has been a victim over the years of the Gulf Wars which resulted in the spillage of millions of oil barrels. These have left a significant amount of pollutants that not only affect marine animals but also alter human lives by affecting soils, groundwater systems and environmental sustainability. This study aims to determine major pollutants that are present at the beaches of Abu Dhabi (a part of the Arabian Gulf). The examination of samples from four different locations was made around Abu Dhabi in the United Arab Emirates. These locations included Al Bateen Beach, Saadiyat Beach, Yas Beach and Ras Al Akhdar beach. The methodology included the analysis of pH, salinity, TDS, heavy metal and trace element levels of seawater. The results indicated no presence of heavy metals in any of the four locations. However, there were traces of copper, aluminium, nitrate and magnesium. The results concluded that it is important to maintain the sustainability of Arabian Gulf water because water is the most important natural resource on this planet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.