Co-administration of VCE restored antioxidant status, lowered by the presence of breast-cancer and chemotherapy. DNA damage was also reduced by VCE. The results suggest that VCE should be useful in protecting against chemotherapy-related side-effects and a randomized control trial to evaluate the effectiveness of VCE in breast-cancer patients using clinical outcomes would be appropriate.
In the present study, oxidative stress and lymphocytic DNA damage in both pre-op and post-op benign prostrate hyperplasia (BPH) patients with age >50 years was evaluated and compared with normal healthy subjects (controls- without any evidence of disease) of the same sex and age group. From December 2007 to November 2009, oxidative stress in 45 BPH patients were evaluated both before (pre-op patients) and after 7 days of surgery (post-op patients) in terms of measurements of plasma levels of (1) various anti-oxidative enzymes, (2) non-enzymatic antioxidants and (3) malondialdehyde which is a product of lipid peroxidation. The lymphocyte DNA damage was also evaluated by single cell alkaline gel electrophoresis in terms of tail length migration in these patients. These values were compared with their respective control subjects of similar sex and age group. The activities of antioxidant enzymes and the levels of antioxidant, reduced glutathione were found significantly decreased (p < 0.05) in serum samples of pre-operative group of BPH patients as compared to the controls. These altered parameters increased significantly (p < 0.05) and returned to their near normal control values, but not up to baseline values, in post operative patients i.e. after the cancer load was decreased by surgery. Lymphocytic DNA damage was found to be significantly increased in pre-op group as compared to controls and was reduced after surgery in post-op group. The present study therefore, shows significantly increased levels of oxidative stress and DNA damage in BPH patients which were reduced after removal of tumour load. Thus oxidative damage plays an important role in prostate tumourogenesis and timely management of oxidative stress can be of importance in preventing the occurrence of BPH.
Zinc is an essential nutrient for human health; it is involved in the catalytic, structural, and regulatory functions of the human cellular system. Different compositions of zinc, as well as its pharmaceutically acceptable salts, are available on the market. Recent studies have demonstrated the role of zinc in combating COVID-19. It has been determined that zinc prevents the entry of SARS-CoV-2 into cells by lowering the expression of ACE-2 receptors and inhibiting the RNA-dependent RNA polymerase of SARS-CoV-2. Zinc also prevents the cytokine storm that takes place after the entry of SARS-CoV-2 into the cell, via its anti-inflammatory activity. The authors believe that no study has yet been published that has reviewed the trends, inventions, and patent literature of zinc compositions to treat/prevent COVID-19. Accordingly, this review has been written in order to fill this gap in the literature. The information about the clinical studies and the published patents/patent applications was retrieved from different databases. This review covers patent literature on zinc compositions up to 31 January 2022. Many important patents/patent applications for zinc-based compositions filed by innovative universities and industries were identified. The patent literature revealed zinc compositions in combination with zinc ionophores, antioxidants, antivirals, antibiotics, hydroxychloroquine, heparin, ivermectin, and copper. Most of these studies were supported by clinical trials. The patent literature supports the potential of zinc and its pharmaceutical compositions as possible treatments for COVID-19. The authors believe that countless zinc-based compositions are still unexplored, and there is an immense opportunity to evaluate a considerable number of the zinc-based compositions for use against COVID-19.
Microemulsions, comprising oil, water and a surfactant, in association with some co-surfactant, are thermodynamically stable systems. They have found applications in a large number of chemical and pharmacological processes due to their unique properties such as large interfacial area, low interfacial tension, and most importantly, the ability to solubilize and deliver hydrophobic drugs. In addition to the oral and intravenous route, they are suitable for drug delivery through the ophthalmic, vaginal, pulmonary, dental, and topical routes. This review highlights the properties and several recent developments in the use of microemulsions for medical treatment purposes including targeted drug delivery.
Oxidative stress, a pervasive condition induced by stress has been implicated and recognized to be a prominent feature of various pathological states including cancer and their progression. The present study sought to validate the effectiveness of chronic unpredictable stress (CUS) on hepatic and renal toxicity in terms of alterations of various in vivo biochemical parameters, oxidative stress markers and the extent of DNA damage in Swiss albino mice. Animals were randomized into different groups based on their exposure to CUS alone, 7,12-dimethylbenz (a) anthracene (DMBA) alone (topical), DMBA-12-O-tetradecanoylphorbol-13-acetate (TPA) (topical), and exposure to CUS prior to DMBA or DMBA-TPA treatment, and sacrificed after 16 weeks of treatment. Prior exposure to CUS increased the pro-oxidant effect of carcinogen as depicted by significantly compromised levels of antioxidants; superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, reduced glutathione in hepatic and renal tissues accompanied by a significant elevation of thiobarbituric acid reactive species (TBARS) as compared to DMBA alone or DMBA-TPA treatments. Loss of structural integrity at the cellular level due to stress-induced oxidative damage was demonstrated by significant increases in the hepatic levels of intracellular marker enzymes such as glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and alkaline phosphatase, and significantly reduced levels of uric acid in kidney tissues. The results of DNA damage studies further positively correlated with all the above biochemical measurements. Thus, exposure to physical or psychological stress may significantly enhance the hepatotoxic and nephrotoxic potential of carcinogens through enhanced oxidative stress even if the treatment is topical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.