In current article, the versatile behaviour of Polyvinylbutyral (PVB)and its ability to form composite materials withvarious inorganic species is reported. PVB has hydrophilic vinyl alcohol groups and hydrophobic vinyl butyral groups. These groups behave as promoters of polymer adhesive and binders for organic moieties. The composite materials of PVB have been synthesized viaphysical as well as chemical both protocols. PVB is used as a constituent part in the formation of composite, induces a specific property in a resulting one which are utilized by various ways since it has stronger in binding ability, sharper optical clarity and able for providing flexibility and toughness in the formed composite. Varioussophisticated instrumentation techniques eg FTIR, XRD, FESEM, TEM etc. are reported for characterizations of samples. The composite materials have excellent film formation properties, and can be potential candidate for photoelectric as well as photovoltaic applications. The inorganic conducting species which do not have film formation ability can be useful by composite formation along with PVB. The green protocols for synthesis of composites may also useful for biological applications.
Modern civilization is heavily reliant on petroleum-based fuels to meet the energy demand of the transportation sector. However, burning fossil fuels in engines emits greenhouse gas emissions that harm the environment. Biofuels are commonly regarded as an alternative for sustainable transportation and economic development. Algal-based fuels, solar fuels, e-fuels, and CO2-to-fuels are marketed as next-generation sources that address the shortcomings of first-generation and second-generation biofuels. This article investigates the benefits, limitations, and trends in different generations of biofuels through a review of the literature. The study also addresses the newer generation of biofuels highlighting the social, economic, and environmental aspects, providing the reader with information on long-term sustainability. The use of nanoparticles in the commercialization of biofuel is also highlighted. Finally, the paper discusses the recent advancements that potentially enable a sustainable energy transition, green economy, and carbon neutrality in the biofuel sector.
AgNPs, over the past decades have attractive considerable interest because of their exclusive optical, electromagnetic, catalytic properties, and antifungal potency compared with other metal nanoparticles. This study was conducted to evaluate the antifungal effect of colloidal AgNPs gainst pathogenic Candida species such as Candida albicans, Candida glabrata and Candida tropicalis using disc diffusion method. Biosynthesis of AgNPs was confirmed by appearance of greyish black color of the fungal filtrate and UV visible spectrometry analysis reveals maximum absorption at 430 nm. The obtained resulted suggested that AgNPs was found to be effective against Candida species based on the diameter of the inhibition zone thus have potential implications to be used as antifungal agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.