Speech processing is considered as crucial and an intensive field of research in the growth of robust and efficient speech recognition system. But the accuracy for speech recognition still focuses for variation of context, speaker's variability, and environment conditions. In this paper, we stated curvelet based Feature Extraction (CFE) method for speech recognition in noisy environment and the input speech signal is decomposed into different frequency channels using the characteristics of curvelet transform for reduce the computational complication and the feature vector size successfully and they have better accuracy, varying window size because of which they are suitable for non-stationary signals. For better word classification and recognition, discrete hidden markov model can be used and as they consider time distribution of speech signals. The HMM classification method attained the maximum accuracy in term of identification rate for informal with 80.1%, scientific phrases with 86%, and control with 63.8 % detection rates. The objective of this study is to characterize the feature extraction methods and classification phage in speech recognition system. The various approaches available for developing speech recognition system are compared along with their merits and demerits. The statistical results shows that signal recognition accuracy will be increased by using discrete Curvelet transforms over conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.