This study was performed to estimate the effect of age at first calving and first two calving intervals on productive life and life time profit in Korean Holsteins. Reproduction data of Korean Holsteins born from 1998 to 2004 and lactation data from 276,573 cows with birth and last dry date that calved between 2000 and 2010 were used for the analysis. Lifetime profit increased with the days of life span. Regression of Life Span on Lifetime profit indicated that there was an increase of 3,800 Won (approximately $3.45) of lifetime profit per day increase in life span. This is evidence that care of each cow is necessary to improve net return and important for farms maintaining profitable cows. The estimates of heritability of age at first calving, first two calving intervals, days in milk for lifetime, lifespan, milk income and lifetime profit were 0.111, 0.088, 0.142, 0.140, 0.143, 0.123, and 0.102, respectively. The low heritabilities indicated that the productive life and economical traits include reproductive and productive characteristics. Age at first calving and interval between first and second calving had negative genetic correlation with lifetime profit (−0.080 and −0.265, respectively). Reducing age at first calving and first calving interval had a positive effect on lifetime profit. Lifetime profit increased to approximately 2,600,000 (2,363.6) from 800,000 Won ($727.3) when age at first calving decreased to (22.3 month) from (32.8 month). Results suggested that reproductive traits such as age at first calving and calving interval might affect various economical traits and consequently influenced productive life and profitability of cows. In conclusion, regard of the age at first calving must be taken with the optimum age at first calving for maximum lifetime profit being 22.5 to 23.5 months. Moreover, considering the negative genetic correlation of first calving interval with lifetime profit, it should be reduced against the present trend of increase.
The present study was performed to study the genetic relationship of productive life with production and type traits of Korean Holsteins at first three lactations. The data for the analysis from 56,054, 28,997, and 11,816 animals of first, second and third parity cows which were born from 2006 to 2011 were collected by Dairy Cattle Improvement Center, National Agricultural Co-operative Federation. Milk, protein and fat yields adjusted for 305 days and average somatic cell score considered as production traits and analyzed type traits were stature, strength, body depth, dairy form, rump angle, rump width, rear leg side view, foot angle, front attachment placement, rear attachment height, rear attachment width, udder cleft, udder depth, front teat placement and front teat length. A multi trait genetic analysis was performed using Wombat program with restricted maximum likelihood animal model composed of fixed effect of birth year, farm and the random effect of animal and random residual effect according to the traits. Heritability estimates of productive life were between 0.06 and 0.13. Genetic and phenotypic correlations between production and productive life traits ranged from 0.35 to 0.04 for milk, 0.16 to 0.05 for protein and 0.18 to 0.02 f 15-0034 (2nd) 150520 or fat. Somatic cells score showed a negative genetic and phenotypic correlation with productive life and also udder type traits, indicating that the selection for higher udder traits will likely to improve resistance to mastitis and persistence in the herd. Among all dairy form type traits, udder characters such as udder cleft showed a significant relationship with productive life. However, a specific change of heritabilities or correlations were not observed with the change of parity. Moreover, further studies are needed to further confirm the significance of the above traits and the effect of parity on above relationships in order to minimize both voluntary and involuntary culling rates while improving herd health and maintaining high yielding dairy cows.
: This study presents the estimates of heritabilities of body measurement traits and carcass traits, and genetic and phenotypic correlations of those traits for crossbred pigs in Korea. Body and ultrasound (A mode: Piglog 105) measurements in 221 pigs including body weight, length, height and width, three back fat thickness at the points of 4th, 14th rib and chine bone, eye muscle area and lean meat percent were collected at the ages of 70, 145 and 180 days and then slaughtered to measure carcass weight, back fat, belly, collar butt, spare rib, picnic shoulder, hind leg, loin, tenderloin, lean meat yield and intramuscular rough fat content in loin. Genetic analysis was done using a multi-trait animal model. Heritabilties of the body measurements were ranged from 0.331 to 0.559 and three measurements of back fat thickness were also high as range varying from 0.402 to 0.475 for the ages of 145 and 180 days. However, eye muscle area was moderate (0.296) at the age of 180 days. Heritabilities of retail cut yields were also high as ranged from 0.387 to 0.474 and of IMF content in loin was 0.499. Heritabilities of the cut percent traits were ranged from 0.249 to 0.488. Important positive genetic and phenotypic correlations were noted for all carcass yield traits (0.298 to 0.875 and 0.432 to 0.922, respectively). IMF showed low negative genetic correlations with carcass yield traits, such as carcass weight, picnic shoulder, hind leg, loin, tenderloin and lean meat yield whereas low positive genetic correlations with back fat, belly, collar butt and spare rib. Loin, tenderloin and lean meat percent showed negative genetic correlations with carcass weight, back fat thickness, collar butt, spare rib and picnic shoulder percent. The four body measurements at the ages of 70, 145 and 180 days had positive genetic correlations with belly, shoulder butt, spare rib, picnic shoulder and hind leg percent, but negative genetic correlations were shown with loin and tenderloin percent except body measurements at 70 days. The results suggest that carcass yield are negatively correlated with intramuscular fat content, which is a major factor deciding pork quality and the yield of loin and tenderloin are not increased as much as increase in body size. However, the proportions of belly and collar butt are increased with the body size. In conclusion, selection strategy should be designed according to the preference on composition of carcass in each country.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.