Improving an enzyme's initially low catalytic efficiency with a new target substrate by an order of magnitude or two may require only a few rounds of mutagenesis and screening or selection. However, subsequent rounds of optimization tend to yield decreasing degrees of improvement (diminishing returns) eventually leading to an optimization plateau. We aimed to optimize the catalytic efficiency of bacterial phosphotriesterase (PTE) toward V-type nerve agents. Previously, we improved the catalytic efficiency of wild-type PTE toward the nerve agent VX by 500-fold, to a catalytic efficiency (kcat/KM) of 5 × 106 M-1 min-1. However, effective in vivo detoxification demands an enzyme with a catalytic efficiency of >107 M-1 min-1. Here, following eight additional rounds of directed evolution and the computational design of a stabilized variant, we evolved PTE variants that detoxify VX with a kcat/KM ≥ 5 × 107 M-1 min-1 and Russian VX (RVX) with a kcat/KM ≥ 107 M-1 min-1. These final 10-fold improvements were the most time consuming and laborious, as most libraries yielded either minor or no improvements. Stabilizing the evolving enzyme, and avoiding tradeoffs in activity with different substrates, enabled us to obtain further improvements beyond the optimization plateau and evolve PTE variants that were overall improved by >5000-fold with VX and by >17 000-fold with RVX. The resulting variants also hydrolyze G-type nerve agents with high efficiency (GA, GB at kcat/KM > 5 × 107 M-1 min-1) and can thus serve as candidates for broad-spectrum nerve-agent prophylaxis and post-exposure therapy using low enzyme doses.
The nearly 200,000 fatalities following exposure to organophosphorus (OP) pesticides each year and the omnipresent danger of a terroristic attack with OP nerve agents emphasize the demand for the development of effective OP antidotes. Standard treatments for intoxicated patients with a combination of atropine and an oxime are limited in their efficacy. Thus, research focuses on developing catalytic bioscavengers as an alternative approach using OP-hydrolyzing enzymes such as Brevundimonas diminuta phosphotriesterase (PTE). Recently, a PTE mutant dubbed C23 was engineered, exhibiting reversed stereoselectivity and high catalytic efficiency (k /K) for the hydrolysis of the toxic enantiomers of VX, CVX, and VR. Additionally, C23's ability to prevent systemic toxicity of VX using a low protein dose has been shown in vivo. In this study, the catalytic efficiencies of V-agent hydrolysis by two newly selected PTE variants were determined. Moreover, in order to establish trends in sequence-activity relationships along the pathway of PTE's laboratory evolution, we examined k /K values of several variants with a number of V-type and G-type nerve agents as well as with different OP pesticides. Although none of the new PTE variants exhibited k /K values >10 M min with V-type nerve agents, which is required for effective prophylaxis, they were improved with VR relative to previously evolved variants. The new variants detoxify a broad spectrum of OPs and provide insight into OP hydrolysis and sequence-activity relationships.
A multiple-unit-type oral floating dosage form (FDF) of 5-fluorouracil (5-FU) was developed to prolong gastric residence time, target stomach cancer, and increase drug bioavailability. The floating bead formulations were prepared by dispersing 5-FU together with calcium carbonate into a mixture of sodium alginate and hydroxypropyl methylcellulose solution and then dripping the dispersion into an acidified solution of calcium chloride. Calcium alginate beads were formed, as alginate undergoes ionotropic gelation by calcium ions and carbon dioxide develops from the reaction of carbonate salts with acid. The evolving gas permeated through the alginate matrix, leaving gas bubbles or pores, which provided the beads buoyancy. The prepared beads were evaluated for percent drug loading, drug entrapment efficiency, image, surface topography, buoyancy, and in vitro release. The formulations were optimized for different weight ratios of gas-forming agent and sodium alginate. The beads containing higher amounts of calcium carbonate demonstrated instantaneous, complete, and excellent floating ability over a period of 24 hours. The optimized formulation was subjected to in vivo antitumor studies to check the therapeutic efficacy of the floating dosage forms containing 5-FU against benzo(a)pyrene-induced stomach tumors in albino female mice (Balb/C strain). The multiple-bead FDF was found to reduce the tumor incidence in mice by 74%, while the conventional tablet dosage form reduced this incidence by only 25%. Results indicate that FDF performed significantly better than the simple tablet dosage form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.