Abstract-In recent years there has been a massive growth in textual information in textual information especially in the internet. People now tend to read more e-books than hard copies of the books. While searching for some topic especially some new topic in the internet it will be easier if someone knows the prerequisites and post-requisites of that topic. It will be easier for someone searching a new topic. Often the topics are found without any proper title and it becomes difficult later on to find which document was for which topic. A text categorization method can provide solution to this problem. In this paper domain based ontology is created so that users can relate to different topics of a domain and an automated text categorization technique is proposed that will categorize the uncategorized documents. The proposed idea is based on Term Frequency -Inverse Document Frequency (tf -idf) method and a dependency graph is also provided in the domain based ontology so that the users can visualize the relations among the terms.
The classification of text is one of the key areas of research for natural language processing. Most of the organizations get customer reviews and feedbacks for their products for which they want quick reviews to action on them. Manual reviews would take a lot of time and effort and may impact their product sales, so to make it quick these organizations have asked their IT to leverage machine learning algorithms to process such text on a real-time basis. Gated recurrent units (GRUs) algorithms which is an extension of the Recurrent Neural Network and referred to as gating mechanism in the network helps provides such mechanism. Recurrent Neural Networks (RNN) has demonstrated to be the main alternative to deal with sequence classification and have demonstrated satisfactory to keep up the information from past outcomes and influence those outcomes for performance adjustment. The GRU model helps in rectifying gradient problems which can help benefit multiple use cases by making this model learn long-term dependencies in text data structures. A few of the use cases that follow aresentiment analysis for NLP. GRU with RNN is being used as it would need to retain long-term dependencies. This paper presents a text classification technique using a sequential word embedding processed using gated recurrent unit sigmoid function in a Recurrent neural network. This paper focuses on classifying text using the Gated Recurrent Units method that makes use of the framework for embedding fixed size, matrix text. It helps specifically inform the network of long-term dependencies. We leveraged the GRU model on the movie review dataset with a classification accuracy of 87%.
-vides a proper solution to this limitation. There are broadly three main categories of Vector Space Model: term-document, word-content and pairpattern matrices. The main aim of this paper is to discuss broadly the three main categories of VSM for semantic analysis of texts and make proper selection for automatic categorizing. The scenario taken up here is categorization of research papers for organizing a national or an international conference based on the proposed methodology. Computers do not understand human language and this makes it difficult when human wants the computer to do some specific task like categorization according to human need. Vector Space Model (VSM) for semantic analysis of texts and make proper selection of one of the three main categories for automatic categorizing of research papers for organizing a national or an international conference based on the proposed methodology.
Various approaches from different fields have been proposed to improve the security of computer system. One such approach is Intrusion detection system monitors computer system in real-time for activities indicating attempted or actual access by unauthorised users. To build an effective intrusion detection system many techniques are available which gathers and analyze information from different areas within a computer system or network and identify various security threats, including both intrusions anomaly i.e. attacks from outside the organization and misuse i.e. attacks from within the organization. Artificial Immune System (AIS) which is inspired by the robust and flexible nature of Human Immune System (HIS) can be incorporated in current Intrusion Detection Systems (IDS) thereby improving their efficiency and performance. This paper gives a review of various artificial immune system approaches that can be used for the development of an Intrusion Detection System. General TermsIntrusion Detection System (IDS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.