In Sequential pattern mining represents an important class of data mining problems with wide range of applications. It is one of the very challenging problems because it deals with the careful scanning of a combinatorially large number of possible subsequence patterns. Broadly sequential pattern ming algorithms can be classified into three types namely Apriori based approaches, Pattern growth algorithms and Early pruning algorithms. These algorithms have further classification and extensions. Detailed explanation of each algorithm along with its important features, pseudo code, advantages and disadvantages is given in the subsequent sections of the paper. At the end a comparative analysis of all the algorithms with their supporting features is given in the form of a table. This paper tries to enrich the knowledge and understanding of various approaches of sequential pattern mining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.