Thus our findings indicate extensive neurodegeneration on exposure to radio waves. Increased production of reactive oxygen species due to exhaustion of enzymatic and non-enzymatic antioxidants and increased lipid peroxidation indicate extensive neurodegeneration in selective areas of CA1, CA3, DG, and the cerebral cortex. This extensive neuronal damage results in alterations in behavior related to memory and learning.
In this report, we demonstrated an interesting application of a bioderived material for the dye sensitized solar cells (DSSCs). Egg white, the clear liquid in a hen's egg, which possesses a remarkable gelling/cross-linking ability, was applied in the form of a gel electrolyte in a DSSC architecture to enhance its durability. A hybrid gel composed of poly(acrylic acid), polyaniline and egg albumen was synthesized, and the cell efficiency, stability and durability of the corresponding DSSC device were studied in detail. The dye sensitized solar cell with the egg albumen based electrolyte demonstrated a conversion energy efficiency of 4.6%. Further, a chemically modified egg albumen with ethylenediaminetetraacetic dianhydride showed improved cross-linking, microstructural and conductivity properties of the gel, and yielded a remarkable 5.75% conversion efficiency. Electrochemical impedance spectroscopy data showed favorable characteristics for charge transport through the modified gel and supported the efficiency observations very well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.