Non-synonymous single nucleotide changes (nSNC) are coding variants that introduce amino acid changes in their corresponding proteins. They can affect protein function; they are believed to have the largest impact on human health compared with SNCs in other regions of the genome. Such a sequence alteration directly affects their structural stability through conformational changes. Presence of these conformational changes near catalytic site or active site may alter protein function and as a consequence receptor-ligand complex interactions. The present investigation includes assessment of human podocin mutations (G92C, P118L, R138Q, and D160G) on its structure. Podocin is an important glomerular integral membrane protein thought to play a key role in steroid resistant nephrotic syndrome. Podocin has a hairpin like structure with 383 amino acids, it is an integral protein homologous to stomatin, and acts as a molecular link in a stretch-sensitive system. We modeled 3D structure of podocin by means of Modeller and validated via PROCHECK to get a Ramachandran plot (88.5% in most favored region), main chain, side chain, bad contacts, gauche and pooled standard deviation. Further, a protein engineering tool Triton was used to induce mutagenesis corresponding to four variants G92C, P118L, R138Q and D160G in the wild type. Perusal of energies of wild and mutated type of podocin structures confirmed that mutated structures were thermodynamically more stable than wild type and therefore biological events favored synthesis of mutated forms of podocin than wild type. As a conclusive part, two mutations G92C (-8179.272 kJ/mol) and P118L (-8136.685 kJ/mol) are more stable and probable to take place in podocin structure over wild podocin structure (-8105.622 kJ/mol). Though there is lesser difference in mutated and wild type (approximately, 74 and 35 kJ/mol), it may play a crucial role in deciding why mutations are favored and occur at the genetic level.
Thermal degradation of geothermal energy occurs even during the duration of geothermal energy facilities. The enormity and efficiency of thermal energy available for electric transformation, as well as plant performance and power production, are both affected by the decrease in geofluid heat. Additionally, due to the generally increased turbine exhaust temperatures, the efficiency of geothermal energy based upon air-cooled organic Rankine cycle devices (ORCs) degrades considerably at hot room temperatures. A newly designed Geothermal-Concentrator Solar Power (GEO-CSP) station is simulated in this work, which allows for greater geothermal power use and enhances the effectiveness of the geothermal ORC system over the power plant’s lifespan. The geothermal fluid entering the ORC’s heating element is heated using the sun’s radiation. The CSP facility is fitted with a thermal energy storing unit that stores excess energy from the sun accessible throughout the day and releases it at nighttime whenever the energy system’s performance is better. When the storage facility is included in the concentrator CSP technology, the incremental yearly energy generation from solar increases by 19 percent, from 5.3 percent to 6.3 percent, similar to the geothermal-only plant. As a result, adding a TES unit to the hybrid unit could be quite beneficial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.