The world’s five Mediterranean-climate regions (MCRs) share unique climatic regimes of mild, wet winters and warm and dry summers. Agriculture in these regions is threatened by increases in the occurrence of drought and high temperature events associated with climate change (CC). In this review we analyze what would be the effects of CC on crops (including orchards and vineyards), how crops and cropping and farming systems could adapt to CC, and what are the social and economic impacts, as well as the strategies used by producers to adapt to CC. In rainfed areas, water deficit occurs mostly during the flowering and grain filling stages (terminal drought stress), which has large detrimental effects on the productivity of crops. Orchards and vineyards, which are mostly cultivated in irrigated areas, will also be vulnerable to water deficit due to a reduction in water available for irrigation and an increase in evapotranspiration. Adaptation of agriculture to CC in MCRs requires integrated strategies that encompass different levels of organization: the crop (including orchards and vineyards), the cropping system (sequence of crops and management techniques used on a particular agricultural field) and the farming system, which includes the farmer.
Aquaporins (AQPs) are transmembrane proteins essential for controlling the flow of water and other molecules required for development and stress tolerance in plants, including important crop species such as wheat (Triticum aestivum). In this study, we utilized a genomic approach for analyzing the information about AQPs available in public databases to characterize their structure and function. Furthermore, we validated the expression of a suite of AQP genes, at the transcriptional level, including accessions with contrasting responses to drought, different organs and water stress levels. We found 65 new AQP genes, from which 60% are copies expanded by polyploidization. Sequence analysis of the AQP genes showed that the purifying selection pressure acted on duplicate genes, which was related to a high conservation of the functions. This situation contrasted with the expression patterns observed for different organs, developmental stages or genotypes under water deficit conditions, which indicated functional divergence at transcription. Expression analyses on contrasting genotypes showed high gene transcription from Tonoplast Intrinsic Protein 1 (TIP1) and 2 (TIP2), and Plasma Membrane Intrinsic Protein 1 (PIP1) and 2 (PIP2) subfamilies in roots and from TIP1 and PIP1 subfamilies in leaves. Interestingly, during severe drought stress, 4 TIP genes analyzed in leaves of the tolerant accession reached up to 15-fold the level observed at the susceptible genotype, suggesting a positive relationship with drought tolerance. The obtained results extend our understanding of the structure and function of AQPs, particularly under water stress conditions.
Conservation tillage is a management system used to mitigate and rehabilitate the dryland areas of southerncentral Chile in severely compacted soils. The objective of this study was to evaluate the soil physical properties in the root zone under an oat-wheat crop rotation after three years of the establishment of three tillage systems: conventional tillage (CT), zero tillage (ZT) and zero tillage with subsoiling (ZTS). Soil bulk density, porosity, water retention curve, stability of macro-and microaggregates, airflow at field capacity, rest coefficient, and number of roots were evaluated. The results showed that the soil had low water holding capacity in the profile due to the low water retention at the permanent wilting point (matric water potential lower than -1.500 kPa), associated with a high bulk density and clay content. The conservation tillage systems (ZT and ZTS), were similar in the parameters of fast drainage pores (FDP), aggregate stability index, airflow, and rest coefficient compared with CT. However, the volume of pores with diameters between 10-50 μm was higher in ZTS in a 24% and 13%, compared with ZT and CT, respectively. In addition, the root development increased significantly in ZTS. In conclusion, the physical condition of the compacted soil was improved by the zero tillage system with subsoiling, which promoted a better root system in the first horizons in highly compacted soils.
Wheat roots are known to play an important role in the yield performance under water-limited (WL) conditions. Three consecutive year trials (2015, 2016, and 2017) were conducted in a glasshouse in 160 cm length tubes on a set of spring wheat ( Triticum aestivum L.) genotypes under contrasting water regimes (1) to assess genotypic variability in root weight density (RWD) distribution in the soil profile, biomass partitioning, and total water used; and (2) to determine the oxygen and hydrogen isotopic signatures of plant and soil water in order to evaluate the contribution of shallow and deep soil water to plant water uptake and the evaporative enrichment of these isotopes in the leaf as a surrogate for plant transpiration. In the 2015 trial under well-watered (WW) conditions, the aerial biomass (AB) was not significantly different among 15 wheat genotypes, while the total root biomass and the RWD distribution in the soil profile were significantly different. In the 2016 and 2017 trials, a subset of five genotypes from the 2015 trial was grown under WW and WL regimes. The water deficit significantly reduced AB only in 2016. The water regimes did not significantly affect the root biomass and root biomass distribution in the soil depths for both the 2016 and 2017 trials. The study results highlighted that under a WL regime, the production of thinner roots with low biomass is more beneficial for increasing the water uptake than the production of large thick roots. The models applied to estimate the relative contribution of the plant’s primary water sources (shallow or deep soil water) showed large interindividual variability in soil, and plant water isotopic composition resulted in large uncertainties in the model estimates. On the other side, the combined information of root architecture and the leaf stable isotope signatures could explain plant water status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.