Signaling through G protein-coupled receptors (GPCRs) underlies many cellular processes, yet it is not known which molecules determine the duration of signaling in intact cells. Two candidates are G protein-coupled receptor kinases (GRKs) and Regulators of G protein signaling (RGSs), deactivation enzymes for GPCRs and G proteins, respectively. Here we investigate whether GRK or RGS governs the overall rate of recovery of the light response in mammalian rod photoreceptors, a model system for studying GPCR signaling. We show that overexpression of rhodopsin kinase (GRK1) increases phosphorylation of the GPCR rhodopsin but has no effect on photoresponse recovery. In contrast, overexpression of the photoreceptor RGS complex (RGS9-1.Gbeta5L.R9AP) dramatically accelerates response recovery. Our results show that G protein deactivation is normally at least 2.5 times slower than rhodopsin deactivation, resolving a long-standing controversy concerning the mechanism underlying the recovery of rod visual transduction.
Chronic treatment with morphine results in a decrease in mu-opioid receptor sensitivity, an increase in acute desensitization and a reduction in the recovery from acute desensitization in locus coeruleus neurons. With acute administration, morphine is unlike many other opioid agonists in that it does not mediate robust acute desensitization or induce receptor trafficking. This study compares mu-opioid receptor desensitization and trafficking in brain slices taken from rats treated for 6–7 days with a range of doses of morphine (60, 30, 15 mg/kg/day) and methadone (60, 30, 5 mg/kg/day) applied by subcutaneous implantation of osmotic mini pumps. Mice were treated with 45 mg/kg/day. In morphine treated animals, recovery from acute [Met]5enkephalin-induced desensitization and receptor recycling was diminished. In contrast, recovery and recycling were unchanged in slices from methadone treated animals. Remarkably the reduced recovery from desensitization and receptor recycling found in slices from morphine treated animals were not observed in animals lacking β-arrestin2. Further, pharmacological inhibition of GRK2, while not affecting the ability of [Met]5enkephalin to induce desensitization, acutely reversed the delay in recovery from desensitization produced by chronic morphine treatment. These results characterize a previously unidentified function of the GRK/arrestin system in mediating opioid regulation in response to chronic morphine administration. They also suggest that the GRK/arrestin system, rather then serving as a primary mediator of acute desensitization, controls recovery from desensitization by regulating receptor reinsertion to the plasma membrane after chronic treatment with morphine. The sustained GRK/arrestin dependent desensitization is another way in which morphine and methadone are distinguished.
The activation of G-protein coupled receptors results in a cascade of events that include acute signaling, desensitization and internalization and it is thought that not all agonists affect each process to the same extent. The early steps in opioid receptor signaling, including desensitization, have been characterized electrophysiologically using brain slice preparations, while most previous studies of opioid receptor trafficking have been conducted in heterologous cell models. This study used transgenic mice that express an epitope-tagged (Flag) mu opioid receptor (FlagMOR) targeted to catecholamine neurons by regulatory elements from the tyrosine hydroxylase gene. Brain slices from there mice were used to study of tagged MOR receptors in neurons of the locus coeruleus (LC). Activation of the FlagMOR with [Met5]enkephalin (ME) produced a hyperpolarization that desensitized acutely to the same extent as native MOR in slices from wild type mice. A series of opioid agonists was then used to study desensitization and receptor trafficking in brain slices, which was monitored with a monoclonal antibody against the Flag epitope (M1) conjugated to Alexa594. Three patterns of receptor trafficking and desensitization were observed: 1. ME, etorphine and methadone resulted in both receptor desensitization and internalization; 2. Morphine and oxymorphone caused significant desensitization without evidence for internalization; 3. Oxycodone was ineffective in both processes. These results show that two distinct forms of signaling were differentially engaged depending on the agonist used to activate the receptor and support the hypothesis that ligand-specific regulation of opioid receptors occurs in neurons maintained in brain slices from adult animals.
The calcium-permeable transient receptor potential M2 (TRPM2) ion channel is activated following oxidative stress and has been implicated in ischemic damage; however, little experimental evidence exists linking TRPM2 channel activation to damage following cerebral ischemia. We directly assessed the involvement of TRPM2 channels in ischemic brain injury using pharmacological inhibitors and short-hairpin RNA (shRNA)-mediated knockdown of TRPM2 expression. Each of the four TRPM2 inhibitors tested provided significant protection to male neurons following in vitro ischemia (oxygen-glucose deprivation, OGD), while having no effect in female neurons. Similarly, TRPM2 knockdown by TRPM2 shRNA resulted in significantly reduced neuronal cell death following OGD only in male neurons. The TRPM2 inhibitor clotrimazole reduced infarct volume in male mice, while having no effect on female infarct volume. Finally, intrastriatal injection of lentivirus expressing shRNA against TRPM2 resulted in significantly smaller striatal infarcts only in male mice following middle cerebral artery occlusion, having no significant effect in female mice. Data presented in the current study demonstrate that TRPM2 inhibition and knockdown preferentially protects male neurons and brain against ischemia in vitro and in vivo, indicating that TRPM2 inhibitors may provide a new therapeutic approach to the treatment of stroke in men.
SUMMARYThe Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of physiological glutamate signaling, but its role in pathological glutamate signaling (excitotoxicity) remains less clear, with indications for both neurotoxic and neuro-protective functions. Here, the role of CaMKII in ischemic injury is assessed utilizing our mouse model of cardiac arrest and cardiopulmonary resuscitation (CA/CPR). CaMKII inhibition (with tatCN21 or tatCN19o) at clinically relevant time points (30 min after resuscitation) greatly reduces neuronal injury. Importantly, CaMKII inhibition also works in combination with mild hypothermia, the current standard of care. The relevant drug target is specifically Ca2+-independent “autonomous” CaMKII activity generated by T286 autophosphorylation, as indicated by substantial reduction in injury in autonomy-incompetent T286A mutant mice. In addition to reducing cell death, tatCN19o also protects the surviving neurons from functional plasticity impairments and prevents behavioral learning deficits, even at extremely low doses (0.01 mg/kg), further highlighting the clinical potential of our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.