Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area, three-phase boundary for gas–liquid reactions. The performance of the copper electrode is significantly enhanced; at overpotentials between 200 and 400 mV, faradaic efficiencies for carbon dioxide reduction up to 85% are obtained. Moreover, the carbon monoxide formation rate is at least one order of magnitude larger when compared with state-of-the-art nanocrystalline copper electrodes. Copper hollow fibre electrodes can be prepared via a facile method that is compatible with existing large-scale production processes. The results of this study may inspire the development of new types of microtubular electrodes for electrochemical processes in which at least one gas-phase reactant is involved, such as in fuel cell technology.
Hybrid organic/inorganic hyper-cross-linked membranes based on imides covalently bonded with polyhedral oligomeric silsesquioxanes (POSS) have recently been developed for gas-separation applications under high pressure and/or temperature conditions. Their molecular sieving capabilities have been shown to depend on the nature of the organic dianhydride precursor. In the present work, realistic molecular models of such polyPOSS-imide films based on the flexible 6FDA dianhydride are compared to those based on the shorter and more rigid PMDA dianhydride. The models creation procedure closely mimicks the mixing, polycondensation and imidization steps of the experimental scheme. The resulting networks are found to be highly heterogeneous in terms of both the number of links (from zero to the maximum possible of eight per POSS cage with an average of four) and their structure (interPOSS, intraPOSS, single-links, double-links) because of the eight-equivalent-arms nature of the POSS precursor. For both dianhydride precursors, crosslinking with POSS and the subsequent imidization step decrease the density, create additional void-space and increase the solubility of the resulting membranes. However, when compared to PMDA, the added flexibility of the central 6FDA bridge leads to a larger thermally-induced dilation of the networks and a larger volume loss per HO over the imidization step. With their better ability to redensify and to adapt to the added constraints, the cagecage distances and cage(organic bridge)cage angles in the 6FDA polyPOSS-imides span a larger range than in their PMDA counterparts. In addition, the stiffness of the PMDA moiety results in more unrelaxed free volume remaining trapped in the PMDA polyPOSS-imides upon imidization, and as such, to significantly more open structures with less favourable interactions. As expected from their enhanced flexibility, the thermomechanical properties of the 6FDA networks are slightly lower than those based on PMDA. However, the better mechanical resistance of PMDA over 6FDA does not really become significant before very large volume dilations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.