The emergence of quantum computers has challenged long-held beliefs about what is efficiently computable given our current physical theories. However, going back to the work of Abrams and Lloyd, changing one aspect of quantum theory can result in yet more dramatic increases in computational power, as well as violations of fundamental physical principles. Here we focus on efficient computation within a framework of general physical theories that make good operational sense. In prior work, Lee and Barrett showed that in any theory satisfying the principle of tomographic locality (roughly, local measurements suffice for tomography of multipartite states) the complexity bound on efficient computation is AWPP. This bound holds independently of whether the principle of causality (roughly, no signalling from the future) is satisfied. In this work we show that this bound is tight: there exists a theory satisfying both the principles of tomographic locality and causality which can efficiently decide everything in AWPP, and in particular can simulate any efficient quantum computation. Thus the class AWPP has a natural physical interpretation: it is precisely the class of problems that can be solved efficiently in tomographically-local theories. This theory is built upon a model of computing involving Turing machines with quasi-probabilities, to wit, machines with transition weights that can be negative but sum to unity over all branches. In analogy with the study of non-local quantum correlations, this leads us to question what physical principles recover the power of quantum computing. Along this line, we give some computational complexity evidence that quantum computation does not achieve the bound of AWPP.
A leading choice of error correction for scalable quantum computing is the surface code with lattice surgery. The basic lattice surgery operations, the merging and splitting of logical qubits, act nonunitarily on the logical states and are not easily captured by standard circuit notation. This raises the question of how best to design, verify, and optimise protocols that use lattice surgery, in particular in architectures with complex resource management issues. In this paper we demonstrate that the operations of the ZX calculus -a form of quantum diagrammatic reasoning based on bialgebrasmatch exactly the operations of lattice surgery. Red and green "spider" nodes match rough and smooth merges and splits, and follow the axioms of a dagger special associative Frobenius algebra. Some lattice surgery operations require non-trivial correction operations, which are captured natively in the use of the ZX calculus in the form of ensembles of diagrams. We give a first taste of the power of the calculus as a language for lattice surgery by considering two operations (T gates and producing a CNOT ) and show how ZX diagram re-write rules give lattice surgery procedures for these operations that are novel, efficient, and highly configurable. arXiv:1704.08670v2 [quant-ph]
Optically linked ion traps are promising as components of network-based quantum technologies, including communication systems and modular computers. Experimental results achieved to date indicate that the fidelity of operations within each ion trap module will be far higher than the fidelity of operations involving the links; fortunately internal storage and processing can effectively upgrade the links through the process of purification. Here we perform the most detailed analysis to date on this purification task, using a protocol which is balanced to maximise fidelity while minimising the device complexity and the time cost of the process. Moreover we 'compile down' the quantum circuit to device-level operations including cooling and shuttling events. We find that a linear trap with only five ions (two of one species, three of another) can support our protocol while incorporating desirable features such as global control, i.e. laser control pulses need only target an entire zone rather than differentiating one ion from its neighbour. To evaluate the capabilities of such a module we consider its use both as a universal communications node for quantum key distribution, and as the basic repeating unit of a quantum computer. For the latter case we evaluate the threshold for fault tolerant quantum computing using the surface code, finding acceptable fidelities for the 'raw' entangling link as low as 83% (or under 75% if an additional ion is available).
The one-way measurement model is a framework for universal quantum computation, in which algorithms are partially described by a graph G of entanglement relations on a collection of qubits. A sufficient condition for an algorithm to perform a unitary embedding between two Hilbert spaces is for the graph G, together with input/output vertices I, O \subset V(G), to have a flow in the sense introduced by Danos and Kashefi [quant-ph/0506062]. For the special case of |I| = |O|, using a graph-theoretic characterization, I show that such flows are unique when they exist. This leads to an efficient algorithm for finding flows, by a reduction to solved problems in graph theory.Comment: 8 pages, 3 figures: somewhat condensed and updated version, to appear in PR
Abstract.We introduce techniques to analyze unitary operations in terms of quadratic form expansions, a form similar to a sum over paths in the computational basis when the phase contributed by each path is described by a quadratic form over R. We show how to relate such a form to an entangled resource akin to that of the one-way measurement model of quantum computing. Using this, we describe various conditions under which it is possible to efficiently implement a unitary operation U , either when provided a quadratic form expansion for U as input, or by finding a quadratic form expansion for U from other input data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.