Glucagon, the pancreatic hormone secreted in response to hypoglycemia, is a key regulator of hepatic glucose production. Since the number of specific glucagon receptors expressed on the cell surface affects the sensitivity of the liver to glucagon, we have examined the regulation of glucagon receptor mRNA levels in cultured primary rat hepatocytes. By ribonuclease protection assay we have identified glucose and intracellular cAMP as regulators of glucagon receptor mRNA expression in cultured rat hepatocytes. We observed a concentration-dependent increase in glucagon receptor mRNA expression when hepatocytes were cultured in the presence of increasing glucose. A 2-fold induction in glucagon receptor mRNA levels was obtained in hepatocytes cultured for 24 h with 22.5 mM glucose as compared with 5.5 mM glucose. Factors such as 3-isobutyl-1-methylxanthine (IBMX), isoproterenol, and forskolin, which are known to raise intracellular cAMP levels, all caused a reduction in glucagon receptor mRNA expression. IBMX alone, IBMX together with isoproterenol, and forskolin reduced glucagon receptor mRNA expression to approximately 25, 10, and 50%, respectively. Glucagon was found to dose dependently decrease glucagon receptor mRNA expression in the hepatocytes with an approximately 70% reduction in response to 100 nM glucagon. Finally, we observed a marked reduction in the number of glucagon binding sites (35% of control) after hepatocytes were cultured with the combination of IBMX and isoproterenol. These results indicate that hepatic glucagon receptor mRNA levels can be regulated by glucose and intracellular cAMP and that this is also reflected at the protein level. Furthermore, the observed effects of cAMP and glucagon suggest that this may be a means by which glucagon can down-regulate its own receptor expression.
Summary Transforming growth factor β (TGF-β) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-β due to lack of type II receptor (RII) has been described in some cancer types including small cell lung cancer (SCLC). The purpose of this study was to examine the cause of absent RII expression in SCLC cell lines. Northern blot analysis showed that RII RNA expression was very weak in 16 of 21 cell lines. To investigate if the absence of RII transcript was due to mutations, we screened the poly-A tract for mutations, but no mutations were detected. Additional screening for mutations of the RII gene revealed a GG to TT base substitution in one cell line, which did not express RII. This mutation generates a stop codon resulting in predicted synthesis of a truncated RII of 219 amino acids. The nature of the mutation, which has not previously been observed in RII, has been linked to exposure to benzo[a]-pyrene, a component of cigarette smoke. Since RII has been mapped to chromosome 3p22 and nearby loci are often hypermethylated in SCLC, it was examined whether the lack of RII expression was due to hypermethylation. Southern blot analysis of the RII promoter did not show altered methylation patterns. The restriction endonuclease pattern of the RII gene was altered in two SCLC cell lines when digested with Sma1. However, treatment with 5-aza-2′-deoxycytidine did not induce expression of RII mRNA. Our results indicate that in SCLC lack of RII mRNA is not commonly due to mutations and inactivation of RII transcription was not due to hypermethylation of the RII promoter or gene. Thus, these data show that in most cases of the SCLC cell lines, the RII gene and promoter is intact in spite of absent RII expression. However, the nature of the mutation found could suggest that it was caused by cigarette smoking.
The pancreatic islet hormone, glucagon, stimulates hepatic glucose production and has also been shown to potentiate glucose-induced insulin secretion. Because glucagon is a key regulator of glucose homeostasis, its receptor, which mediates the actions of glucagon, was considered a candidate gene involved in the pathogenesis of NIDDM. We have previously reported that a single heterozygous missense mutation in exon 2 of the glucagon receptor gene, which changes a glycine to a serine (Gly40Ser), is associated with NIDDM in a French population. In the present study, the signaling properties of this mutant receptor were examined in baby hamster kidney cells and rat insulinoma cells (RIN-5AH) stably transfected with either the wild type or Gly40Ser mutant human glucagon receptor cDNAs. Competition assays using (125)I-labeled glucagon were performed, and in both cell types, the Gly40Ser mutant receptor was found to bind glucagon with an approximately threefold lower affinity compared with the wild type receptor. In both cell types, the production of cAMP in response to glucagon was decreased in cells expressing the mutant receptor compared with those expressing the wild type. Finally, glucagon-stimulated insulin secretion by RIN cells expressing the mutant receptor was decreased such that the dose-response curve was shifted to the right in comparison to that obtained with cells expressing the wild type receptor. These results indicate that this single-point mutation located in the extracellular region of the glucagon receptor decreases the sensitivity of target tissues to glucagon.
Glucagon and glucagon-like peptide-1 (GLP-1) are important regulators of glucose homeostasis, and both are involved in regulating pancreatic islet hormone secretion. Since the sensitivity of the endocrine pancreas to regulatory hormones can be influenced by their receptor number, we have examined the regulation of glucagon receptor and GLP-1 receptor messenger RNA (mRNA) expression in cultured rat pancreatic islets by various factors, including glucose, cAMP, and glucocorticoids. By ribonuclease protection assay we have demonstrated the expression of both glucagon and GLP-1 receptor mRNA in cultured rat islets. We observed a dose-dependent increase in glucagon receptor mRNA expression with increasing glucose concentrations: an approximately 3-fold increase in glucagon receptor mRNA in islets cultured in 22 mM glucose as compared to 3.5 mM glucose. GLP-1 receptor mRNA levels, on the other hand, were not affected by culturing the islets in low glucose concentrations; however, a small, but significant, decrease in GLP-1 receptor mRNA levels was detected when islets were cultured in 20 mM glucose. Forskolin and 3-isobuty-1-methylxanthine, which increase intracellular cAMP levels, caused a 75% reduction in glucagon receptor mRNA expression. Somatostatin 14 and 28, both of which can inhibit intracellular cAMP production, stimulated glucagon receptor mRNA expression by 40% and 75%, respectively. GLP-1 receptor mRNA levels remained unchanged under all conditions that altered intracellular cAMP levels. Finally, in islets cultured in the presence of 10 nM dexamethasone an approximately 50% decrease in both glucagon and GLP-1 receptor mRNA expression was observed. These results indicate that the expression of glucagon and GLP-1 receptor mRNA is differentially regulated in rat pancreatic islets and suggest that regulation of receptor mRNA expression may be an important mechanism for controlling the sensitivity of the islets to glucagon and GLP-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.