Abstract. We present the European research project GHOST, (Safeguarding home IoT environments with personalised real-time risk control), which challenges the traditional cyber security solutions for the IoT by proposing a novel reference architecture that is embedded in an adequately adapted smart home network gateway, and designed to be vendor-independent. GHOST proposes to lead a paradigm shift in consumer cyber security by coupling usable security with transparency and behavioural engineering.
The Internet of Things (IoT) makes our lives much easier, more valuable, and less stressful due to the development of many applications around us including smart cities, smart cars, and smart grids, offering endless services and solutions. Protecting IoT data of such applications at rest either on the objects or in the cloud is an indispensable requirement for achieving a symmetry in the handling and protection of the IoT, as we do with data created by persons and applications. This is because unauthorised access to such data may lead to harmful consequences such as linkage attacks, loss of privacy, and data manipulation. Such undesired implications may jeopardise the existence of IoT applications if protection measures are not taken, and they stem from two main factors. One is that IoT objects have limited capabilities in terms of memory capacity, battery life, and computational power that hamper the direct implementation of conventional Internet security solutions without some modifications (e.g., traditional symmetric algorithms). Another factor is the absence of widely accepted IoT security and privacy guidelines for IoT data at rest and their appropriate countermeasures, which would help IoT stakeholders (e.g., developers, manufacturers) to develop secure IoT systems and therefore enhance IoT security and privacy by design. Toward this end, we first briefly describe the main IoT security goals and identify IoT stakeholders. Moreover, we briefly discuss the most well-known data protection frameworks (e.g., General Data Protection Regulation (GDPR), Health Insurance Portability (HIPAA)). Second, we highlight potential attacks and threats against data at rest and show their violated security goals (e.g., confidentiality and integrity). Third, we review a list of protection measures by which our proposed guidelines can be accomplished. Fourth, we propose a framework of security and privacy guidelines for IoT data at rest that can be utilised to enhance IoT security and privacy by design and establish a symmetry with the protection of user-created data. Our framework also presents the link between the suggested guidelines, mitigation techniques, and attacks. Moreover, we state those IoT stakeholders (e.g., manufacturers, developers) who will benefit most from these guidelines. Finally, we suggest several open issues requiring further investigation in the future, and we also discuss the limitations of our suggested framework.
Abstract. Blockchain is a distributed ledger technology that became popular as the foundational block of the Bitcoin cryptocurrency. Over the past few years it has seen a rapid growth, both in terms of research and commercial usage. Due to its decentralized nature and its inherent use of cryptography, Blockchain provides an elegant solution to the Byzantine Generals Problem and is thus a good candidate for use in areas that require a decentralized consensus among untrusted peers, eliminating the need for a central authority. Internet of Things is a technology paradigm where a multitude of small devices, including sensors, actuators and RFID tags, are interconnected via a common communications medium to enable a whole new range of tasks and applications. However, existing IoT installations are often vulnerable and prone to security and privacy concerns. This paper studies the use of Blockchain to strengthen the security of IoT networks through a resilient, decentralized mechanism for the connected home that enhances the network self-defense by safeguarding critical security-related data. This mechanism is developed as part of the Safe-Guarding Home IoT Environments with Personalised Real-time Risk Control (GHOST) project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.