Experimental leishmaniasis is an excellent model system for analyzing Th1/Th2 differentiation. Resistance to Leishmania (L.) major depends on the development of a L. major specific Th1 response, while Th2 differentiation results in susceptibility. There is growing evidence that the microenvironment of the early affected tissue delivers the initial triggers for Th-cell differentiation. To analyze this we studied differential gene expression in infected skin of resistant and susceptible mice 16h after parasite inoculation. Employing microarray technology, bioinformatics, laser-microdissection and in-situ-hybridization we found that the epidermis was the major source of immunomodulatory mediators. This epidermal gene induction was significantly stronger in resistant mice especially for several genes known to promote Th1 differentiation (IL-12, IL-1β, osteopontin, IL-4) and for IL-6. Expression of these cytokines was temporally restricted to the crucial time of Th1/2 differentiation. Moreover, we revealed a stronger epidermal up-regulation of IL-6 in the epidermis of resistant mice. Accordingly, early local neutralization of IL-4 in resistant mice resulted in a Th2 switch and mice with a selective IL-6 deficiency in non-hematopoietic cells showed a Th2 switch and dramatic deterioration of disease. Thus, our data indicate for the first time that epidermal cytokine expression is a decisive factor in the generation of protective Th1 immunity and contributes to the outcome of infection with this important human pathogen.
CCL2, also referred to as MCP-1, is critically involved in directing the migration of blood monocytes to sites of inflammation. Consequently, excessive CCL2 secretion has been linked to many inflammatory diseases, whereas a lack of expression severely impairs immune responsiveness. We demonstrate that IκBζ, an atypical IκB family member and transcriptional coactivator required for the selective expression of a subset of NF-κB target genes, is a key activator of the Ccl2 gene. IκBζ-deficient macrophages exhibited impaired secretion of CCL2 when challenged with diverse inflammatory stimuli, such as LPS or peptidoglycan. These findings were reflected at the level of Ccl2 gene expression, which was tightly coupled to the presence of IκBζ. Moreover, mechanistic insights acquired by chromatin immunoprecipitation demonstrate that IκBζ is directly recruited to the proximal promoter region of the Ccl2 gene and is required for transcription-enhancing histone H3 at lysine-4 trimethylation. Finally, IκBζ-deficient mice showed significantly impaired CCL2 secretion and monocyte infiltration in an experimental model of peritonitis. Together, these findings suggest a distinguished role of IκBζ in mediating the targeted recruitment of monocytes in response to local inflammatory events.
To decipher early promoters of the local microenvironment for Th2-type immunity, we wanted to identify gene patterns that were induced by Leishmania major in the infected skin of susceptible, Th2-prone BALB/c, but not of resistant, Th1-prone C57BL/6 mice. We found a marked up-regulation of the chemokine I-TAC (Cxcl11) during the first 2 d of infection in the epidermis of susceptible but not of resistant mice. Accordingly, local injection of I-TAC (2×1 μg) in resistant mice on the first day of infection resulted in a Th2-driven, sustained deterioration of disease and dramatically enhanced parasite levels. On the cellular level, I-TAC decreased IL-12 production by dendritic cells (DCs) in skin-draining lymph nodes and by DCs in vitro. Thus, we demonstrate for the first time that epidermis-derived I-TAC triggers a sustained Th2-response that determines the outcome of a complex immunological process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.