The history of therapeutic interventions in clinical trials for sepsis has been referred to as the "graveyard for pharmaceutical companies." That is now set to change, as research provides hope for new approaches that will be therapeutically effective in humans with sepsis.
Sepsis remains a serious cause of morbidity and mortality, and the pathophysiology of the disease is not clear. The definition of the clinical manifestations of sepsis is ever evolving. This review discusses the search for effective therapeutic interventions, hurdles in translational sepsis research, and new therapies in development in current clinical trials.
SUMMARY Sepsis is among the most common causes of death in hospitals. It arises from the host response to infection. Currently, diagnosis relies on nonspecific physiological criteria and culture-based pathogen detection. This results in diagnostic uncertainty, therapeutic delays, the mis- and overuse of antibiotics, and the failure to identify patients who might benefit from immunomodulatory therapies. There is a need for new sepsis biomarkers that can aid in therapeutic decision making and add information about screening, diagnosis, risk stratification, and monitoring of the response to therapy. The host response involves hundreds of mediators and single molecules, many of which have been proposed as biomarkers. It is, however, unlikely that one single biomarker is able to satisfy all the needs and expectations for sepsis research and management. Among biomarkers that are measurable by assays approved for clinical use, procalcitonin (PCT) has shown some usefulness as an infection marker and for antibiotic stewardship. Other possible new approaches consist of molecular strategies to improve pathogen detection and molecular diagnostics and prognostics based on transcriptomic, proteomic, or metabolic profiling. Novel approaches to sepsis promise to transform sepsis from a physiologic syndrome into a group of distinct biochemical disorders and help in the development of better diagnostic tools and effective adjunctive sepsis therapies.
IntroductionRecent models capturing the pathophysiology of sepsis and ex-vivo data from patients are speculating about immunosuppression in the so-called late phase of sepsis. Clinical data regarding survival and microbiological burden are missing. The aim of this study was to determine the clinical significance of the 'late phase' of sepsis with respect to overall survival and occurrence of microbiological findings.MethodsIn a retrospective trial, 16,041 patient charts from a university intensive care unit were screened, and 999 patients with severe sepsis or septic shock were identified. Three phases were established according to the mortality peaks which were separated by two distinct nadirs: phase I (days 1 to 5), phase II (days 6 to 15) and phase III (days 16 to 150). Patients were analyzed for outcome, SOFA scores, procalcitonin levels, antimicrobial treatment, dialysis, mechanical ventilation and results of blood cultures during their hospital stay.ResultsOut of 999 enrolled patients, 308 died during the course of sepsis presenting a characteristic mortality rate (30.8%) with three distinct mortality peaks (at days 2, 7 and 17). Overall 36.7% of all deaths occurred in the early phase (phase I) and 63.3% during the later phases (phase II + III). In total 2,117 blood cultures were drawn. In phase I, 882 blood cultures were drawn, representing a sampling rate of 88% with a positive rate of 14.9%. In phase II, 461 samples were taken, indicating a sampling rate of 52% and a positive rate of 11.3%. Within phase III, 524 samples were obtained representing a sampling rate of 66% with a positive rate of 15.3%, which was significantly higher compared to the positive rate of phase II and similar to phase I. In particular, the rate of typically opportunistic bacteria increased significantly from 9% in phase I up to 18% in phase III. The same is true for Candida spp. (phase I 13%, phase III 30%).ConclusionsThe later phase of sepsis is associated with a significant re-increase of positive blood culture results, especially regarding opportunistic bacteria and fungi. These observations warrant further studies focusing on the underlying mechanisms resulting in this outcome burden in the later phase of sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.