Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting, their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.
Therapeutic alteration of gene expression in vivo can be achieved by delivering nucleic acids (e.g., mRNA, siRNA) using nanoparticles. Recent progress in modified messenger RNA (mmRNA) synthesis facilitated the development of lipid nanoparticles (LNPs) loaded with mmRNA as a promising tool for in vivo protein expression. Although progress have been made with mmRNA-LNPs based protein expression in hepatocytes, cell specificity is still a major challenge. Moreover, selective protein expression is essential for an improved therapeutic effect, due to the heterogeneous nature of diseases. Here, we present a precision protein expression strategy in Ly6c+ inflammatory leukocytes in inflammatory bowel disease (IBD) induced mice. We demonstrate a therapeutic effect in an IBD model by targeted expression of the interleukin 10 in Ly6c+ inflammatory leukocytes. A selective mmRNA expression strategy has tremendous therapeutic potential in IBD and can ultimately become a novel therapeutic modality in many other diseases.
Therapeutic RNA molecules possess high potential for treating medical conditions if they can successfully reach the target cell upon administration. However, unmodified RNA molecules are rapidly degraded and cleared from the circulation. In addition, their large size and negative charge complicates their passing through the cell membrane. The difficulty of RNA therapy, therefore, lies in the efficient intracellular delivery of intact RNA molecules to the tissue of interest without inducing adverse effects. Here, we outline the recent developments in therapeutic RNA delivery and discuss the wide potential in manipulating the function of cells with RNAs. The focus is not only on the variety of delivery strategies but also on the versatile nature of RNA and its wide applicability. This wide applicability is especially interesting when considering the modular nature of nucleic acids. An optimal delivery vehicle, therefore, can facilitate numerous clinical applications of RNA.
Lipid nanoparticles (LNPs) are the most advanced nonviral platforms for small interfering RNA (siRNA) delivery that are clinically approved. These LNPs, based on ionizable lipids, are found in the liver and are now gaining much attention in the field of RNA therapeutics. The previous generation of ionizable lipids varies in linker moieties, which greatly influences in vivo gene silencing efficiency. Here novel ionizable amino lipids based on the linker moieties such as hydrazine, hydroxylamine, and ethanolamine are designed and synthesized. These lipids are formulated into LNPs and screened for their efficiency to deliver siRNAs into leukocytes, which are among the hardest to transfect cell types. Two potent lipids based on their in vitro gene silencing efficiencies are also identified. These lipids are further evaluated for their biodistribution profile, efficient gene silencing, liver toxicity, and potential immune activation in mice. A robust gene silencing is also found in primary lymphocytes when one of these lipids is formulated into LNPs with a pan leukocyte selective targeting agent (β7 integrin). Taken together, these lipids have the potential to open new avenues in delivering RNAs into leukocytes.
Molecular imaging modalities hold great potential as less invasive techniques for diagnosis and management of various diseases. Molecular imaging combines imaging agents with targeting moieties to specifically image diseased sites in the body. Monoclonal antibodies (mAbs) have become increasingly popular as novel therapeutics against a variety of diseases due to their specificity, affinity and serum stability. Because of the same properties, mAbs are also exploited in molecular imaging to target imaging agents such as radionuclides to the cell of interest in vivo. Many studies investigated the use of mAb-targeted imaging for a variety of purposes, for instance to monitor disease progression and to predict response to a specific therapeutic agent. Herein, we highlighted the application of mAb-targeted imaging in three different types of pathologies: autoimmune diseases, oncology and cardiovascular diseases. We also described the potential of molecular imaging strategies in theranostics and precision medicine. Due to the nearly infinite repertoire of mAbs, molecular imaging can change the future of modern medicine by revolutionizing diagnostics and response prediction in practically any disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.