Photofragment translational spectroscopy experiments employing tunable vacuum ultraviolet photoionization yielded absolute photoionization cross sections for vinyl and propargyl radicals at 10 eV of 11.1Ϯ2.2 and 8.3Ϯ1.6 Mb, respectively. From these values, the photoionization efficiency curves from 7.8-10.8 eV for these radicals were placed on an absolute scale.
The photodissociation dynamics of 1,3-butadiene at 193 nm have been investigated with photofragment translational spectroscopy coupled with product photoionization using tunable VUV synchrotron radiation. Five product channels are evident from this study: C(4)H(5) + H, C(3)H(3) + CH(3), C(2)H(3) + C(2)H(3), C(4)H(4) + H(2), and C(2)H(4) + C(2)H(2). The translational energy (P(E(T))) distributions suggest that these channels result from internal conversion to the ground electronic state followed by dissociation. To investigate the dissociation dynamics in more detail, further studies were carried out using 1,3-butadiene-1,1,4,4-d(4). Branching ratios were determined for the channels listed above, as well as relative branching ratios for the isotopomeric species produced from 1,3-butadiene-1,1,4,4-d(4) dissociation. C(3)H(3) + CH(3) is found to be the dominant channel, followed by C(4)H(5) + H and C(2)H(4) + C(2)H(2), for which the yields are approximately equal. The dominance of the C(3)H(3) + CH(3) channel shows that isomerization to 1,2-butadiene followed by dissociation is facile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.