We present evidence for a close analogy between the nonlinear behaviour of a pulsed microwave-driven Josephson junction at low temperature and the experimentally observed behaviour of Josephson systems operated below the quantum transition temperature under similar conditions. We specifically address observations of Ramsey-type fringe oscillations, which can be understood in classical nonlinear dynamics as results of slow transient oscillations in a pulsed microwave environment. Simulations are conducted to mimic experimental measurements by recording the statistics of microwave-induced escape events from the anharmonic potential well of a zero-voltage state. Observations consistent with experimentally obtained Ramsey-type oscillations are found in the classical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.