Reassimilation of internal CO via woody tissue photosynthesis has a substantial effect on tree carbon income and wood production. However, little is known about its role in xylem vulnerability to cavitation and its implications in drought-driven tree mortality. Young trees of Populus nigra were subjected to light exclusion at the branch and stem levels. After 40 d, measurements of xylem water potential, diameter variation and acoustic emission (AE) were performed in detached branches to obtain acoustic vulnerability curves to cavitation following bench-top dehydration. Acoustic vulnerability curves and derived AE values (i.e. water potential at which 50% of cavitation-related acoustic emissions occur) differed significantly between light-excluded and control branches (AE = -1.00 ± 0.13 MPa; AE = -1.45 ± 0.09 MPa; P = 0.007) denoting higher vulnerability to cavitation in light-excluded trees. Woody tissue photosynthesis represents an alternative and immediate source of nonstructural carbohydrates (NSC) that confers lower xylem vulnerability to cavitation via sugar-mediated mechanisms. Embolism repair and xylem structural changes could not explain this observation as the amount of cumulative AE and basic wood density did not differ between treatments. We suggest that woody tissue assimilates might play a role in the synthesis of xylem surfactants for nanobubble stabilization under tension.
The formation of air emboli in the xylem during drought is one of the key processes leading to plant mortality due to loss in hydraulic conductivity, and strongly fuels the interest in quantifying vulnerability to cavitation. The acoustic emission (AE) technique can be used to measure hydraulic conductivity losses and construct vulnerability curves. For years, it has been believed that all the AE signals are produced by the formation of gas emboli in the xylem sap under tension. More recent experiments, however, demonstrate that gas emboli formation cannot explain all the signals detected during drought, suggesting that different sources of AE exist. This complicates the use of the AE technique to measure emboli formation in plants. We therefore analysed AE waveforms measured on branches of grapevine (Vitis vinifera L. 'Chardonnay') during bench dehydration with broadband sensors, and applied an automated clustering algorithm in order to find natural clusters of AE signals. We used AE features and AE activity patterns during consecutive dehydration phases to identify the different AE sources. Based on the frequency spectrum of the signals, we distinguished three different types of AE signals, of which the frequency cluster with high 100-200 kHz frequency content was strongly correlated with cavitation. Our results indicate that cavitation-related AE signals can be filtered from other AE sources, which presents a promising avenue into quantifying xylem embolism in plants in laboratory and field conditions.
Acoustic emissions are frequently used in material sciences and engineering applications for structural health monitoring. It is known that plants also emit acoustic emissions, and their application in plant sciences is rapidly increasing, especially to investigate drought-induced plant stress. Vulnerability to drought-induced cavitation is a key trait of plant water relations, and contains valuable information about how plants may cope with drought stress. There is, however, no consensus in literature about how this is best measured. Here, we discuss detection of acoustic emissions as a measure for drought-induced cavitation. Past research and the current state of the art are reviewed. We also discuss how the acoustic emission technique can help solve some of the main issues regarding quantification of the degree of cavitation, and how it can contribute to our knowledge about plant behavior during drought stress. So far, crossbreeding in the field of material sciences proved very successful, and we therefore recommend continuing in this direction in future research.
The impact of drought on the hydraulic functioning of important African tree species, like Maesopsis eminii Engl., is poorly understood. To map the hydraulic response to drought-induced cavitation, sole reliance on the water potential at which 50% loss of xylem hydraulic conductivity (ψ50) occurs might be limiting and at times misleading as the value alone does not give a comprehensive overview of strategies evoked by M. eminii to cope with drought. This article therefore uses a methodological framework to study the different aspects of drought-induced cavitation and water relations in M. eminii. Hydraulic functioning of whole-branch segments was investigated during bench-top dehydration. Cumulative acoustic emissions and continuous weight measurements were used to quantify M. eminii's vulnerability to drought-induced cavitation and hydraulic capacitance. Wood structural traits, including wood density, vessel area, diameter and wall thickness, vessel grouping index, solitary vessel index and vessel wall reinforcement, were used to underpin observed physiological responses. On average, M. eminii's ψ50 (±SE) was -1.9 ± 0.1 MPa, portraying its xylem as drought vulnerable, just as one would expect for a common tropical pioneer. However, M. eminii additionally employed an interesting desiccation delay strategy, fuelled by internal relocation of leaf water, hydraulic capacitance and the presence of parenchyma around the xylem vessels. Our findings suggest that exclusive dependence on ψ50 would have misdirected our assessments of M. eminii's drought stress vulnerability. Hydraulic capacitance linked to anatomy and leaf-water relocation behaviour was equally important to better understand M. eminii's drought survival strategies. Because our study was conducted on branches of 3-year-old greenhouse-grown M. eminii seedlings, the findings cannot be simply extrapolated to adult M. eminii trees or their mature wood, because structural and physiological plant properties change with age. The techniques and methodological framework used in this study are, however, transferable to other species regardless of age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.