We consider the line planning problem in public transport in the Parametric City, an idealized model that captures typical scenarios by a (small) number of parameters. The Parametric City is rotation symmetric, but optimal line plans are not always symmetric. This raises the question to quantify the symmetry gap between the best symmetric and the overall best solution. For our analysis, we formulate the line planning problem as a mixed integer linear program, that can be solved in polynomial time if the solutions are forced to be symmetric. The symmetry gap is provably small when a specific Parametric City parameter is fixed, and we give an approximation algorithm for line planning in the Parametric City in this case. While the symmetry gap can be arbitrarily large in general, we show that symmetric line plans are a good choice in most practical situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.