TCR with known antitumor reactivity can be genetically introduced into primary human T lymphocytes and provide promising tools for immunogene therapy of tumors. We molecularly characterized two distinct TCRs specific for the same HLA-A2-restricted peptide derived from the melanocyte differentiation Ag gp100, yet exhibiting different stringencies in peptide requirements. The existence of these two distinct gp100-specific TCRs allowed us to study the preservation of peptide fine specificity of native TCRαβ when engineered for TCR gene transfer into human T lymphocytes. Retroviral transduction of primary human T lymphocytes with either one of the two sets of TCRαβ constructs enabled T lymphocytes to specifically kill and produce TNF-α when triggered by native gp100pos/HLA-A2pos tumor target cells as well as gp100 peptide-loaded HLA-A2pos tumor cells. Peptide titration studies revealed that the cytolytic efficiencies of the T lymphocyte transductants were in the same range as those of the parental CTL clones. Moreover, primary human T lymphocytes expressing either one of the two engineered gp100-specific TCRs show cytolytic activities in response to a large panel of peptide mutants that are identical with those of the parental CTL. The finding that two gp100-specific TCR, derived from two different CTL, can be functionally introduced into primary human T lymphocytes without loss of the Ag reactivity and peptide fine specificity, holds great promise for the application of TCR gene transfer in cancer immunotherapy.
Vegan or vegetarian diets have been suggested to reduce type 2 diabetes (T2D) risk. However, not much is known on whether variation in the degree of having a plant-based versus animal-based diet may be beneficial for prevention of T2D. We aimed to investigate whether level of adherence to a diet high in plant-based foods and low in animal-based foods is associated with insulin resistance, prediabetes, and T2D. Our analysis included 6798 participants (62.7 ± 7.8 years) from the Rotterdam Study (RS), a prospective population-based cohort in the Netherlands. Dietary intake data were collected with food-frequency questionnaires at baseline of three sub-cohorts of RS (RS-I-1: 1989–1993, RS-II-1: 2000–2001, RS-III-1: 2006–2008). We constructed a continuous plant-based dietary index (range 0–92) assessing adherence to a plant-based versus animal-based diet. Insulin resistance at baseline and follow-up was assessed using homeostasis model assessment of insulin resistance (HOMA-IR). Prediabetes and T2D were collected from general practitioners’ records, pharmacies’ databases, and follow-up examinations in our research center until 2012. We used multivariable linear mixed models to examine association of the index with longitudinal HOMA-IR, and multivariable Cox proportional-hazards regression models to examine associations of the index with risk of prediabetes and T2D. During median 5.7, and 7.3 years of follow-up, we documented 928 prediabetes cases and 642 T2D cases. After adjusting for sociodemographic and lifestyle factors, a higher score on the plant-based dietary index was associated with lower insulin resistance (per 10 units higher score: β = −0.09; 95% CI: − 0.10; − 0.08), lower prediabetes risk (HR = 0.89; 95% CI: 0.81; 0.98), and lower T2D risk [HR = 0.82 (0.73; 0.92)]. After additional adjustment for BMI, associations attenuated and remained statistically significant for longitudinal insulin resistance [β = −0.05 (− 0.06; − 0.04)] and T2D risk [HR = 0.87 (0.79; 0.99)], but no longer for prediabetes risk [HR = 0.93 (0.85; 1.03)]. In conclusion, a more plant-based and less animal-based diet may lower risk of insulin resistance, prediabetes and T2D. These findings strengthen recent dietary recommendations to adopt a more plant-based diet.Clinical Trial Registry number and website NTR6831, http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6831.Electronic supplementary materialThe online version of this article (10.1007/s10654-018-0414-8) contains supplementary material, which is available to authorized users.
Progression to acquired immunodeficiency syndrome (AIDS) has been related to exhaustion of the regenerative capacity of the immune system resulting from high T cell turnover. Analysis of telomeric terminal restriction fragment (TRF) length, a marker for cellular replicative history, showed that CD8(+) T cell TRF length decreased but CD4(+) T cell TRF length was stable during the course of human immunodeficiency virus type-1 (HIV-1) infection, which was not explained by differential telomerase activity. This observation provides evidence that turnover in the course of HIV-1 infection can be increased considerably in CD8(+) T cells, but not in CD4(+) T cells. These results are compatible with CD4(+) T cell decline in HIV-1 infection caused by interference with cell renewal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.