Objectives: We aimed to objectify and compare persisting self-reported symptoms in initially hospitalized and non-hospitalized patients after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by applying clinical standardized measures. Methods: We conducted a cross-sectional study of adult patients with confirmed SARS-CoV-2 infection including medical history, neurological examination, blood markers, neuropsychological testing, patient-reported outcome measures (PROMs), and brain magnetic resonance imaging (MRI). Results: Fifty patients with persisting symptoms for at least 4 weeks were included and classified by initial hospitalization status. Median time from SARS-CoV-2 detection to investigation was 29.3 weeks (range 3.3-57.9). Although individual cognitive performance was generally within the normative range in both groups, mostly mild deficits were found in attention, executive functions, and memory. Hospitalized patients performed worse in global cognition, logical reasoning, and processes of verbal memory. In both groups, fatigue severity was associated with reduced performance in attention and psychomotor speed tasks (r s = À0.40, p < 0.05) and reduced quality of life (EQ5D, r s = 0.57, p < 0.001) and with more persisting symptoms (median 3 vs. 6, p < 0.01). PROMs identified fatigue, reduced sleep quality, and increased anxiety and depression in both groups but more pronounced in nonhospitalized patients. Brain MRI revealed microbleeds exclusively in hospitalized patients (n = 5). Interpretation: Regardless of initial COVID-19 severity, an individuals' mental and physical health can be severely impaired in the longterm limitedly objectified by clinical standard diagnostic with abnormalities primarily found in hospitalized patients. This needs to be considered when planning rehabilitation therapies and should give rise to new biomarker research.
Background In the EMPA-REG OUTCOME trial (Empagliflozin Cardiovascular Outcome Event Trial) treatment with the sodium-glucose cotransporter-2 (SGLT2) inhibitor empagliflozin significantly reduced heart failure hospitalization (HHF) in patients with type 2 diabetes mellitus (T2D) and established cardiovascular disease. The early separation of the HHF event curves within the first 3 months of the trial suggest that immediate hemodynamic effects may play a role. However, hitherto no data exist on early effects of SGLT2 inhibitors on hemodynamic parameters and cardiac function. Thus, this study examined early and delayed effects of empagliflozin treatment on hemodynamic parameters including systemic vascular resistance index, cardiac index, and stroke volume index, as well as echocardiographic measures of cardiac function. Methods In this placebo-controlled, randomized, double blind, exploratory study patients with T2D were randomized to empagliflozin 10 mg or placebo for a period of 3 months. Hemodynamic and echocardiographic parameters were assessed after 1 day, 3 days and 3 months of treatment. Results Baseline characteristics were not different in the empagliflozin (n = 22) and placebo (n = 20) group. Empagliflozin led to a significant increase in urinary glucose excretion (baseline: 7.3 ± 22.7 g/24 h; day 1: 48.4 ± 34.7 g/24 h; p < 0.001) as well as urinary volume (1740 ± 601 mL/24 h to 2112 ± 837 mL/24 h; p = 0.011) already after one day compared to placebo. Treatment with empagliflozin had no effect on the primary endpoint of systemic vascular resistance index, nor on cardiac index, stroke volume index or pulse rate at any time point. In addition, echocardiography showed no difference in left ventricular systolic function as assessed by left ventricular ejections fraction and strain analysis. However, empagliflozin significantly improved left ventricular filling pressure as assessed by a reduction of early mitral inflow velocity relative to early diastolic left ventricular relaxation (E/eʹ) which became significant at day 1 of treatment (baseline: 9.2 ± 2.6; day 1: 8.5 ± 2.2; p = 0.005) and remained apparent throughout the study. This was primarily attributable to reduced early mitral inflow velocity E (baseline: 0.8 ± 0.2 m/s; day 1: 0.73 ± 0.2 m/sec; p = 0.003). Conclusions Empagliflozin treatment of patients with T2D has no significant effect on hemodynamic parameters after 1 or 3 days, nor after 3 months, but leads to rapid and sustained significant improvement of diastolic function. Trial registration EudraCT Number: 2016-000172-19; date of registration: 2017-02-20 (clinicaltrialregister.eu)
Sodium‐glucose cotransporter‐2 (SGLT2) inhibitors have been shown to significantly reduce hospitalization for heart failure (HHF) and cardiovascular (CV) mortality in various CV outcome trials in patients with and without type 2 diabetes mellitus (T2D). SGLT2 inhibition further increased haemoglobin and haematocrit levels by an as yet unknown mechanism, and this increase has been shown to be an independent predictor of the CV benefit of these agents, for example, in the EMPA‐REG OUTCOME trial. The present analysis of the EMPA haemodynamic study examined the early and delayed effects of empagliflozin treatment on haemoglobin and haematocrit levels, in addition to measures of erythropoiesis and iron metabolism, to better understand the underlying mechanisms. In this prospective, placebo‐controlled, double‐blind, randomized, two‐arm parallel, interventional and exploratory study, 44 patients with T2D were randomized into two groups and received empagliflozin 10 mg or placebo for a period of 3 months in addition to their concomitant medication. Blood and urine was collected at baseline, on Day 1, on Day 3 and after 3 months of treatment to investigate effects on haematological variables, erythropoietin concentrations and indices of iron stores. Baseline characteristics were comparable in the empagliflozin (n = 20) and placebo (n = 22) group. Empagliflozin led to a significant increase in urinary glucose excretion (baseline: 7.3 ± 22.7 g/24 h; Day 1: 48.4 ± 34.7 g/24 h; P < 0.001) as well as urinary volume (baseline: 1740 ± 601 mL/24 h; Day 1: 2112 ± 837 mL/24 h; P = 0.011) already after 1 day and throughout the 3‐month study period, while haematocrit and haemoglobin were only increased after 3 months of treatment (haematocrit: baseline: 40.6% ± 4.6%; Month 3: 42.2% ± 4.8%, P < 0.001; haemoglobin: baseline: 136 ± 19 g/L; Month 3: 142 ± 25 g/L; P = 0.008). In addition, after 3 months, empagliflozin further increased red blood cell count (P < 0.001) and transferrin concentrations (P = 0.063) and there was a trend toward increased erythropoietin levels (P = 0.117), while ferritin (P = 0.017), total iron (P = 0.053) and transferrin saturation levels (P = 0.030) decreased. Interestingly, the increase in urinary glucose excretion significantly correlated with the induction of erythropoietin in empagliflozin‐treated patients at the 3‐month timepoint (Spearman rho 0.64; P = 0.008). Empagliflozin increased haemoglobin concentrations and haematocrit with a delayed time kinetic, which was most likely attributable to increased erythropoiesis with augmented iron utilization and not haemoconcentration. This might be attributable to reduced tubular glucose reabsorption in response to SGLT2 inhibition, possibly resulting in diminished cellular stress as a mechanism for increased renal erythropoietin secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.