The mammalian hypothalamus strongly influences ingestive behaviour through several different signalling molecules and receptor systems. Here we show that CART (cocaine- and amphetamine-regulated transcript), a brain-located peptide, is a satiety factor and is closely associated with the actions of two important regulators of food intake, leptin and neuropeptide Y. Food-deprived animals show a pronounced decrease in expression of CART messenger RNA in the arcuate nucleus. In animal models of obesity with disrupted leptin signalling, CART mRNA is almost absent from the arcuate nucleus. Peripheral administration of leptin to obese mice stimulates CART mRNA expression. When injected intracerebroventricularly into rats, recombinant CART peptide inhibits both normal and starvation-induced feeding, and completely blocks the feeding response induced by neuropeptide Y. An antiserum against CART increases feeding in normal rats, indicating that CART may be an endogenous inhibitor of food intake in normal animals.
Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of conditions ranging from simple steatosis (NAFL), over nonalcoholic steatohepatitis (NASH) with or without fibrosis, to cirrhosis with end-stage disease. The hepatic molecular events underlying the development of NAFLD and transition to NASH are poorly understood. The present study aimed to determine hepatic transcriptome dynamics in patients with NAFL or NASH compared with healthy normal-weight and obese individuals. RNA sequencing and quantitative histomorphometry of liver fat, inflammation and fibrosis were performed on liver biopsies obtained from healthy normal-weight ( n = 14) and obese ( n = 12) individuals, NAFL ( n = 15) and NASH ( n = 16) patients. Normal-weight and obese subjects showed normal liver histology and comparable gene expression profiles. Liver transcriptome signatures were largely overlapping in NAFL and NASH patients, however, clearly separated from healthy normal-weight and obese controls. Most marked pathway perturbations identified in both NAFL and NASH were associated with markers of lipid metabolism, immunomodulation, extracellular matrix remodeling, and cell cycle control. Interestingly, NASH patients with positive Sonic hedgehog hepatocyte staining showed distinct transcriptome and histomorphometric changes compared with NAFL. In conclusion, application of immunohistochemical markers of hepatocyte injury may serve as a more objective tool for distinguishing NASH from NAFL, facilitating improved resolution of hepatic molecular changes associated with progression of NAFLD. NEW & NOTEWORTHY Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in Western countries. NAFLD is associated with the metabolic syndrome and can progress to the more serious form, nonalcoholic steatohepatitis (NASH), and ultimately lead to irreversible liver damage. Using gold standard molecular and histological techniques, this study demonstrates that the currently used diagnostic tools are problematic for differentiating mild NAFLD from NASH and emphasizes the marked need for developing improved histological markers of NAFLD progression.
The novel neuropeptide cocaine-amphetamine-regulated transcript (CART) is expressed in several hypothalamic regions and has recently been shown to be involved in the central control of food intake. To characterize the hypothalamic CART neurons and understand the physiological functions they might serve, we undertook an in situ hybridization and immunohistochemical study to examine distribution and neurochemical phenotype of these neurons. In situ hybridization studies showed abundant CART mRNA in the periventricular nucleus (PeV), the paraventricular nucleus of the hypothalamus (PVN), the supraoptic nucleus (SON), the arcuate nucleus (Arc), the zona incerta, and the lateral hypothalamic area. The distribution of CART-immunoreactive neurons as revealed by a monoclonal antibody raised against CART(41-89) displayed complete overlap with CART mRNA. Double immunohistochemistry showed co-existence of CART immunoreactivity (CART-IR) and somatostatin in some neurons of the PeV. In the magnocellular division of the PVN as well as the SON, CART-IR was demonstrated in both oxytocinergic and vasopressinergic perikarya. In the medial parvicellular region of the PVN a few CART-IR neurons co-localized galanin, but none was found to co-localize corticotropin-releasing hormone. In the Arc, almost all pro-opiomelanocortinergic neurons were shown to contain CART, whereas no co-localization of CART with NPY was found. In the lateral hypothalamic area nearly all CART neurons were found to contain melanin-concentrating hormone. The present data support a role for CART in neuroendocrine regulation. Most interestingly, CART is co-stored with neurotransmitters having both positive (melanin-concentrating hormone) as well as a negative (pro-opiomelanocortin) effect on food intake and energy balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.