Our knowledge of disease genes in neurological disorders is incomplete. With the aim of closing this gap, we performed whole-exome sequencing on 143 multiplex consanguineous families in whom known disease genes had been excluded by autozygosity mapping and candidate gene analysis. This prescreening step led to the identification of 69 recessive genes not previously associated with disease, of which 33 are here described (SPDL1, TUBA3E, INO80, NID1, TSEN15, DMBX1, CLHC1, C12orf4, WDR93, ST7, MATN4, SEC24D, PCDHB4, PTPN23, TAF6, TBCK, FAM177A1, KIAA1109, MTSS1L, XIRP1, KCTD3, CHAF1B, ARV1, ISCA2, PTRH2, GEMIN4, MYOCD, PDPR, DPH1, NUP107, TMEM92, EPB41L4A, and FAM120AOS). We also encountered instances in which the phenotype departed significantly from the established clinical presentation of a known disease gene. Overall, a likely causal mutation was identified in >73% of our cases. This study contributes to the global effort toward a full compendium of disease genes affecting brain function.
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in the mammal. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced green fluorescent protein to perform visualized, whole-cell patch recordings from prepubertal female hypothalamic slices. The mouse POMC-enhanced green fluorescent protein neurons expressed the same endogenous conductances (a transient outward K(+) current and a hyperpolarization-activated, cation current) that have been described for guinea pig POMC neurons. In addition, the selective micro -opioid receptor agonist DAMGO induced an outward current (maximum of 12.8 +/- 1.2 pA), which reversed at K(+) equilibrium potential (E(K+)), in the majority (85%) of POMC neurons with an EC(50) of 102 nM. This response was blocked by the opioid receptor antagonist naloxone with an inhibition constant of 3.1 nM. In addition, the gamma-aminobutyric acid(B) receptor agonist baclofen (40 micro M) caused an outward current (21.6 +/- 4.0 pA) that reversed at E(K+) in these same neurons. The ATP-sensitive potassium channel opener diazoxide also induced an outward K(+) current (maximum of 18.7 +/- 2.2 pA) in the majority (92%) of POMC neurons with an EC(50) of 61 micro M. The response to diazoxide was blocked by the sulfonylurea tolbutamide, indicating that the POMC neurons express both Kir6.2 and sulfonylurea receptor 1 channel subunits, which was verified using single cell RT-PCR. This pharmacological and molecular profile suggested that POMC neurons might be sensitive to metabolic inhibition, and indeed, we found that their firing rate varied with changes in glucose concentrations. Therefore, it appears that POMC neurons may function as an integrator of metabolic cues and synaptic input for controlling homeostasis in the mammal.
Intellectual disability (ID) is a measurable phenotypic consequence of genetic and environmental factors. In this study, we prospectively assessed the diagnostic yield of genomic tools (molecular karyotyping, multi-gene panel and exome sequencing) in a cohort of 337 ID subjects as a first-tier test and compared it with a standard clinical evaluation performed in parallel. Standard clinical evaluation suggested a diagnosis in 16% of cases (54/337) but only 70% of these (38/54) were subsequently confirmed. On the other hand, the genomic approach revealed a likely diagnosis in 58% (n=196). These included copy number variants in 14% (n=54, 15% are novel), and point mutations revealed by multi-gene panel and exome sequencing in the remaining 43% (1% were found to have Fragile-X). The identified point mutations were mostly recessive (n=117, 81%), consistent with the high consanguinity of the study cohort, but also X-linked (n=8, 6%) and de novo dominant (n=19, 13%). When applied directly on all cases with negative molecular karyotyping, the diagnostic yield of exome sequencing was 60% (77/129). Exome sequencing also identified likely pathogenic variants in three novel candidate genes (DENND5A, NEMF and DNHD1) each of which harbored independent homozygous mutations in patients with overlapping phenotypes. In addition, exome sequencing revealed de novo and recessive variants in 32 genes (MAMDC2, TUBAL3, CPNE6, KLHL24, USP2, PIP5K1A, UBE4A, TP53TG5, ATOH1, C16ORF90, SLC39A14, TRERF1, RGL1, CDH11, SYDE2, HIRA, FEZF2, PROCA1, PIANP, PLK2, QRFPR, AP3B2, NUDT2, UFC1, BTN3A2, TADA1, ARFGEF3, FAM160B1, ZMYM5, SLC45A1, ARHGAP33 and CAPS2), which we highlight as potential candidates on the basis of several lines of evidence, and one of these genes (SLC39A14) was biallelically inactivated in a potentially treatable form of hypermanganesemia and neurodegeneration. Finally, likely causal variants in previously published candidate genes were identified (ASTN1, HELZ, THOC6, WDR45B, ADRA2B and CLIP1), thus supporting their involvement in ID pathogenesis. Our results expand the morbid genome of ID and support the adoption of genomics as a first-tier test for individuals with ID.
BackgroundCiliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete.ResultsWe applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their “mutation load” beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population.ConclusionsOur study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-016-1099-5) contains supplementary material, which is available to authorized users.
The function of presynaptic GABA receptors in the regulation of transmitter release in supraoptic nucleus (SON) magnocellular neurons was investigated by recording spontaneous postsynaptic currents from rat magnocellular SON neurons in a slice preparation (150μM thick, 1.8 mm in diameter) using the whole‐cell patch‐clamp technique. Both the spontaneous EPSCs and IPSCs were TTX resistant. The EPSCs were abolished by 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX), whereas the IPSCs were abolished by picrotoxin, suggesting that the EPSCs and IPSCs are synaptic inputs from glutamatergic and GABAergic neurons, respectively. The selective GABAB agonist, baclofen, reduced the frequency of both the EPSCs and IPSCs without affecting the amplitude. The time constant of the decay phase of both the EPSCs and IPSCs remained unchanged after baclofen application. The reduction of the frequency of the synaptic currents by baclofen was dose dependent (10 nM to 100 μm) and the EC50 values were 5.8 and 8.5 μm for the EPSCs and IPSCs, respectively. The effect of baclofen (10μM) was antagonized by the selective GABAB antagonist, 2‐hydroxy‐saclofen (2OH‐saclofen), at 300 μm. When given alone, 2OH‐saclofen (100 μm) increased the frequency of both the EPSCs and IPSCs without affecting their amplitude, suggesting that endogenously released GABA in the slice acts on presynaptic GABAB receptors. The GABAA agonist, muscimol, reduced the frequency of EPSCs, and picrotoxin increased the frequency of the EPSCs, suggesting that GABAA receptors also participate in the presynaptic inhibition of glutamate release. Taken together, these data suggest that GABAB receptors are present on the presynaptic terminals of both GABA and glutamate neurons in the SON, and that these presynaptic GABAB receptors play an important role in the regulation of the neuronal activity in SON magnocellular neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.