We proposed and implemented a sound recognition system for electric equipment control. In recent years, industry 4.0 has propelled a rapid growth in intelligent human–machine interactions. User acoustic voice commands for machine control have been examined the most by researchers. The targeted machine can be controlled through voice without the use of any hand-held device. However, compared with human voice recognition, limited research has been conducted on nonhuman voice (e.g., mewing sounds) or nonvoice sound recognition (e.g., clapping). Processing of such short-term, biometric nonvoice sounds for electric equipment control requires a rapid response with correct recognition. In practice, this could lead to a trade-off between recognition accuracy and processing performance for conventional software-based implementations. Therefore, we realized a field-programmable gate array-based embedded system, such a hardware-accelerated platform, can enhance information processing performance using a dynamic time warping accelerator. Furthermore, information processing was refined for two specific applications (i.e., mewing sounds and clapping) to enhance system performance including recognition accuracy and execution speed. Performance analyses and demonstrations on real products were conducted to validate the proposed system.
In this paper, we propose an implementation of machine-type communications by combining a novel hardware-accelerated serial interface and a conventional Internet of things (IoT) gateway. Even all home appliances with an infrared (IR) remote controller can be operated through the Internet. In the future, application paradigms will transfer from human-type communications to machine-type communications to provide services such as health care and smart-home control systems. erefore, commercial IoT gateways are required for intranet-Internet bridging of various wireless access services. Home appliances that are currently used or will foreseeably be used in the future lack network capabilities but can be controlled by an IR remote controller. Accordingly, to leverage existing IR control capabilities, we implemented a smart-home control system, which enables an IR signal to be remotely controlled to emit through the Internet. e implemented system provides a hardware-accelerated serial interface to sample IR signals-including extremely high-frequency signals-and includes a hardware-based data compression mechanism able to reduce the size of oversampled data and save flash memory space. A more intelligent control style can thus be realized by leveraging existing home appliances for the smart-homes of the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.