Background Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease dementia (PDD), and frontotemporal lobar dementia (FTLD) are characterized by progressive neuronal loss but differ in their underlying pathological mechanisms. However, neuroinflammation is commonly observed within these different forms of dementia. Recently, it has been suggested that an altered sphingolipid metabolism may contribute to the pathogenesis of a variety of neurodegenerative conditions. Especially ceramide, the precursor of all complex sphingolipids, is thought to be associated with pro-apoptotic cellular processes, thereby propagating neurodegeneration and neuroinflammation, although it remains unclear to what extent. The current pathological study therefore investigates whether increased levels of ceramide are associated with the degree of neuroinflammation in various neurodegenerative disorders. Methods Immunohistochemistry was performed on human post-mortem tissue of PDD and FTLD Pick’s disease cases, which are well-characterized cases of dementia subtypes differing in their neuroinflammatory status, to assess the expression and localization of ceramide, acid sphingomyelinase, and ceramide synthase 2 and 5. In addition, we determined the concentration of sphingosine, sphingosine-1-phosphate (S1P), and ceramide species differing in their chain-length in brain homogenates of the post-mortem tissue using HPLC-MS/MS. Results Our immunohistochemical analysis reveals that neuroinflammation is associated with increased ceramide levels in astrocytes in FTLD Pick’s disease. Moreover, the observed increase in ceramide in astrocytes correlates with the expression of ceramide synthase 5. In addition, HPLC-MS/MS analysis shows a shift in ceramide species under neuroinflammatory conditions, favoring pro-apoptotic ceramide. Conclusions Together, these findings suggest that detected increased levels of pro-apoptotic ceramide might be a common denominator of neuroinflammation in different neurodegenerative diseases. Electronic supplementary material The online version of this article (10.1186/s12974-019-1436-1) contains supplementary material, which is available to authorized users.
Dysfunction of the blood-brain barrier (BBB) contributes significantly to the pathogenesis of several neuroinflammatory diseases, including multiple sclerosis (MS). Potential players that regulate BBB function are the liver X receptors (LXRs), which are ligand activated transcription factors comprising two isoforms, LXRα, and LXRβ. However, the role of LXRα and LXRβ in regulating BBB (dys)function during neuroinflammation remains unclear, as well as their individual involvement. Therefore, the goal of the present study is to unravel whether LXR isoforms have different roles in regulating BBB function under neuroinflammatory conditions. We demonstrate that LXRα, and not LXRβ, is essential to maintain barrier integrity in vitro . Specific knockout of LXRα in brain endothelial cells resulted in a more permeable barrier with reduced expression of tight junctions. Additionally, the observed dysfunction was accompanied by increased endothelial inflammation, as detected by enhanced expression of vascular cell adhesion molecule (VCAM-1) and increased transendothelial migration of monocytes toward inflammatory stimuli. To unravel the importance of LXRα in BBB function in vivo , we made use of the experimental autoimmune encephalomyelitis (EAE) MS mouse model. Induction of EAE in a constitutive LXRα knockout mouse and in an endothelial specific LXRα knockout mouse resulted in a more severe disease score in these animals. This was accompanied by higher numbers of infiltrating leukocytes, increased endothelial VCAM-1 expression, and decreased expression of the tight junction molecule claudin-5. Together, this study reveals that LXRα is indispensable for maintaining BBB integrity and its immune quiescence. Targeting the LXRα isoform may help in the development of novel therapeutic strategies to prevent BBB dysfunction, and thereby neuroinflammatory disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.