Most people acquire literacy skills with remarkable ease, even though the human brain is not evolutionarily adapted to this relatively new cultural phenomenon. Associations between letters and speech sounds form the basis of reading in alphabetic scripts. We investigated the functional neuroanatomy of the integration of letters and speech sounds using functional magnetic resonance imaging (fMRI). Letters and speech sounds were presented unimodally and bimodally in congruent or incongruent combinations. Analysis of single-subject data and group data aligned on the basis of individual cortical anatomy revealed that letters and speech sounds are integrated in heteromodal superior temporal cortex. Interestingly, responses to speech sounds in a modality-specific region of the early auditory cortex were modified by simultaneously presented letters. These results suggest that efficient processing of culturally defined associations between letters and speech sounds relies on neural mechanisms similar to those naturally evolved for integrating audiovisual speech.
Learning to associate auditory information of speech sounds with visual information of letters is a first and critical step for becoming a skilled reader in alphabetic languages. Nevertheless, it remains largely unknown which brain areas subserve the learning and automation of such associations. Here, we employ functional magnetic resonance imaging to study letter-speech sound integration in children with and without developmental dyslexia. The results demonstrate that dyslexic children show reduced neural integration of letters and speech sounds in the planum temporale/Heschl sulcus and the superior temporal sulcus. While cortical responses to speech sounds in fluent readers were modulated by letter-speech sound congruency with strong suppression effects for incongruent letters, no such modulation was observed in the dyslexic readers. Whole-brain analyses of unisensory visual and auditory group differences additionally revealed reduced unisensory responses to letters in the fusiform gyrus in dyslexic children, as well as reduced activity for processing speech sounds in the anterior superior temporal gyrus, planum temporale/Heschl sulcus and superior temporal sulcus. Importantly, the neural integration of letters and speech sounds in the planum temporale/Heschl sulcus and the neural response to letters in the fusiform gyrus explained almost 40% of the variance in individual reading performance. These findings indicate that an interrelated network of visual, auditory and heteromodal brain areas contributes to the skilled use of letter-speech sound associations necessary for learning to read. By extending similar findings in adults, the data furthermore argue against the notion that reduced neural integration of letters and speech sounds in dyslexia reflect the consequence of a lifetime of reading struggle. Instead, they support the view that letter-speech sound integration is an emergent property of learning to read that develops inadequately in dyslexic readers, presumably as a result of a deviant interactive specialization of neural systems for processing auditory and visual linguistic inputs.
The perception of objects is a cognitive function of prime importance. In everyday life, object perception benefits from the coordinated interplay of vision, audition, and touch. The different sensory modalities provide both complementary and redundant information about objects, which may improve recognition speed and accuracy in many circumstances. We review crossmodal studies of object recognition in humans that mainly employed functional magnetic resonance imaging (fMRI). These studies show that visual, tactile, and auditory information about objects can activate cortical association areas that were once believed to be modality-specific. Processing converges either in multisensory zones or via direct crossmodal interaction of modality-specific cortices without relay through multisensory regions. We integrate these findings with existing theories about semantic processing and propose a general mechanism for crossmodal object recognition: The recruitment and location of multisensory convergence zones varies depending on the information content and the dominant modality.
In transparent alphabetic languages, the expected standard for complete acquisition of letter-speech sound associations is within one year of reading instruction. The neural mechanisms underlying the acquisition of letter-speech sound associations have, however, hardly been investigated. The present article describes an ERP study with beginner and advanced readers in which the influence of letters on speech sound processing is investigated by comparing the MMN to speech sounds presented in isolation with the MMN to speech sounds accompanied by letters. Furthermore, SOA between letter and speech sound presentation was manipulated in order to investigate the development of the temporal window of integration for letter-speech sound processing. Beginner readers, despite one year of reading instruction, showed no early letter-speech sound integration, that is, no influence of the letter on the evocation of the MMN to the speech sound. Only later in the difference wave, at 650 msec, was an influence of the letter on speech sound processing revealed. Advanced readers, with 4 years of reading instruction, showed early and automatic letter-speech sound processing as revealed by an enhancement of the MMN amplitude, however, at a different temporal window of integration in comparison with experienced adult readers. The present results indicate a transition from mere association in beginner readers to more automatic, but still not "adult-like," integration in advanced readers. In contrast to general assumptions, the present study provides evidence for an extended development of letter-speech sound integration.
Temporal proximity is a critical determinant for cross-modal integration by multisensory neurons. Information content may serve as an additional binding factor for more complex or less natural multisensory information. Letters and speech sounds, which form the basis of literacy acquisition, are not naturally related but associated through explicit learning. We investigated the relative importance of temporal proximity and information content on the integration of letters and speech sounds by manipulating both factors within the same functional magnetic resonance imaging (fMRI) design. The results reveal significant interactions between temporal proximity and content congruency in anterior and posterior auditory association cortex, indicating that temporal synchrony is critical for the integration of letters and speech sounds. The temporal profiles for multisensory integration in the auditory association cortex resemble those demonstrated for single multisensory neurons in different brain structures and animal species. This similarity suggests that basic neural integration rules apply to the binding of multisensory information that is not naturally related but overlearned during literacy acquisition. Furthermore, the present study shows the suitability of fMRI to study temporal aspects of multisensory neural processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.