SummaryMultiple human diseases are associated with a liquid-to-solid phase transition resulting in the formation of amyloid fibers or protein aggregates. Here, we present an alternative mechanism for cellular toxicity based on a concentration-dependent liquid-liquid demixing. Analyzing proteins that are toxic when their concentration is increased in yeast reveals that they share physicochemical properties with proteins that participate in physiological liquid-liquid demixing in the cell. Increasing the concentration of one of these proteins indeed results in the formation of cytoplasmic foci with liquid properties. Demixing occurs at the onset of toxicity and titrates proteins and mRNAs from the cytoplasm. Focus formation is reversible, and resumption of growth occurs as the foci dissolve as protein concentration falls. Preventing demixing abolishes the dosage sensitivity of the protein. We propose that triggering inappropriate liquid phase separation may be an important cause of dosage sensitivity and a determinant of human disease.
From transcription, to transport, storage, and translation, RNA depends on association with different RNA‐binding proteins (RBPs). Methods based on next‐generation sequencing and protein mass‐spectrometry have started to unveil genome‐wide interactions of RBPs but many aspects still remain out of sight. How many of the binding sites identified in high‐throughput screenings are functional? A number of computational methods have been developed to analyze experimental data and to obtain insights into the specificity of protein–RNA interactions. How can theoretical models be exploited to identify RBPs? In addition to oligomeric complexes, protein and RNA molecules can associate into granular assemblies whose physical properties are still poorly understood. What protein features promote granule formation and what effects do these assemblies have on cell function? Here, we describe the newest in silico, in vitro, and in vivo advances in the field of protein–RNA interactions. We also present the challenges that experimental and computational approaches will have to face in future studies. WIREs RNA 2016, 7:793–810. doi: 10.1002/wrna.1378For further resources related to this article, please visit the WIREs website.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.