The interaction between land use/cover change and landscape pattern is pivotal in research concerning global environmental change. This study uses three different Landsat images of 1989, 1998 and 2009 to study the land use/cover and landscape pattern changes in the middle reaches of the Tarim River basin. envi®, erdas®, ArcGIS® and fragstats® software were used to analyse the land use/cover changes. The objectives of study were to map and study the changes in land use/cover and landscape pattern, and propose some possible factors in making the land use/cover changes from 1989 to 2009. Seven different types of land use/cover are analysed, and the results are listed in tables. From 1989 to 1998, the percentage of farmland, slight–moderate saline land, heavy saline land and water areas have increased; woodland, desert and the undeveloped land have decreased. From 1998 to 2009, farmland, heavy saline land and the undeveloped land have increased; the other types of land use/cover have decreased. The gravity centre of each land use/cover types has shifted. The farthest shifting of the gravity centre was heavy saline land, which occurred between 1989 and 1998. The transformation and changes of land use/covers and landscape occurred more frequently from 1989 to 2009. Other types of land use and land cover changes to saline land have increased, which implied that a serious salinization took place in the Tarim Basin. The results from this study would show the adverse environmental changes (e.g. salinization and desertification) and they can be used for future sustainable management of land resources. Copyright © 2013 John Wiley & Sons, Ltd.
Effective pretreatment of spectral reflectance is vital to model accuracy in soil parameter estimation. However, the classic integer derivative has some disadvantages, including spectral information loss and the introduction of high-frequency noise. In this paper, the fractional order derivative algorithm was applied to the pretreatment and partial least squares regression (PLSR) was used to assess the clay content of desert soils. Overall, 103 soil samples were collected from the Ebinur Lake basin in the Xinjiang Uighur Autonomous Region of China, and used as data sets for calibration and validation. Following laboratory measurements of spectral reflectance and clay content, the raw spectral reflectance and absorbance data were treated using the fractional derivative order from the 0.0 to the 2.0 order (order interval: 0.2). The ratio of performance to deviation (RPD), determinant coefficients of calibration (), root mean square errors of calibration (RMSEC), determinant coefficients of prediction (), and root mean square errors of prediction (RMSEP) were applied to assess the performance of predicting models. The results showed that models built on the fractional derivative order performed better than when using the classic integer derivative. Comparison of the predictive effects of 22 models for estimating clay content, calibrated by PLSR, showed that those models based on the fractional derivative 1.8 order of spectral reflectance ( = 0.907, RMSEC = 0.425%, = 0.916, RMSEP = 0.364%, and RPD = 2.484 ≥ 2.000) and absorbance ( = 0.888, RMSEC = 0.446%, = 0.918, RMSEP = 0.383% and RPD = 2.511 ≥ 2.000) were most effective. Furthermore, they performed well in quantitative estimations of the clay content of soils in the study area.
Vegetation fractional coverage (VFC) is an important index to describe and evaluate the ecological system. The vegetation index is widely used to monitor vegetation coverage in the field of remote sensing (RS). In this paper, the author conducted a case study of the delta oasis of Weigan and Kuqa rivers, which is a typical saline area in the Tarim River Watershed. The current study was based on the TM/ETM+ images of 1989, 2001, and 2006, and supported by Geographic Information System (GIS) spatial analysis, vegetation index, and dimidiate pixel model. In addition, VBSI (vegetation, bare soil and shadow indices) suitable for TM/ETM+ images, constructed with FCD (forest canopy density) model principle and put forward by ITTO (International Tropical Timber Organization), was used, and it was applied to estimate the VFC. The estimation accuracy was later proven to be up to 83.52%. Further, the study analyzed and appraised the changes in vegetation patterns and revealed a pattern of spatial change in the vegetation coverage of the study area by producing the map of VFC levels in the delta oasis. Forest, grassland, and farmland were the three main land-use types with high and extremely-high coverage, and they played an important role in maintaining the vegetation. The forest area determined the changes of the coverage area, whereas the other two land types affected the directions of change. Therefore, planting trees, protecting grasslands, reclaiming farmlands, and controlling unused lands should be included in a long-term program because of their importance in keeping regional vegetation coverage. Finally, the dynamic variation of VFC in the study area was evaluated according to the quantity and spatial distribution rendered by plant cover digital images to deeply analyze the reason behind the variation.
Soil salinity is one of the most damaging environmental problems worldwide, especially in arid and semiarid regions. The objectives of this study were to improve the inversion accuracy of soil salt content (SSC) in soils with spectral heterogeneity by using optimized spectral indices. Soil samples at a 0–20 cm depth were taken from Keriya Oasis (98 soil samples), Ugan-Kuqa Oasis (49 soil samples), and Ebinur Lake Basin (57 soil samples). SSC and spectral reflectance (SR) of all the 204 soil samples were determined. To comprehensively analyze the field-collected hyperspectral data, various band combinations were used to calculate a normalized difference spectral index (NDSI) and ratio spectral index (RSI). Then, the relationships between the indices and SSC were examined, and the most robust relationships were demonstrated. The partial least squares regression (PLSR) method was utilized to develop a predictive model of SSC, and the variable importance in the projection (VIP) method was used during modeling. The results revealed that (i) the salinized soils in different regions had apparent differences in both reflectance and spectral curve morphology, but the optimized spectral indices method effectively overcame the regional heterogeneity of salinized soil hyperspectral characteristics, and the correlation with SSC was always kind, with correlation coefficients up to 0.748 at 0.001 level of significance; (ii) the VIP filtering method effectively selected the optimal independent model, and the modeling accuracy was better than the single optimization index (R2Pre = 0.83 and RMSEPre = 2.31 g·kg−1) by using the combination of two optimal indices; (iii) although the global modeling accuracy was significantly lower than the local modeling accuracy due to the inconsistent salt sensitivity bands of salinized soils in different regions, combined with cross-validation analysis, the global model had the ability to predict soil salinization accurately (R2Pre = 0.69 and RMSEPre = 8.45 g·kg−1). The methods developed in this study can be applied in other arid and semiarid areas. Besides, the study also provides examples for aerospace hyperspectral remote sensing of cross-regional soil salinization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.