The Mycobacterium tuberculosis catalase-peroxidase is a multifunctional heme-dependent enzyme that activates the core anti-tuberculosis drug isoniazid. Numerous studies have been undertaken to elucidate the enzyme-dependent mechanism of isoniazid activation, and it is well documented that mutations that reduce activity or inactivate the catalase-peroxidase lead to increased levels of isoniazid resistance in M. tuberculosis. Interpretation of the catalytic activities and the effects of mutations upon the action of the enzyme to date have been limited due to the lack of a three-dimensional structure for this enzyme. In order to provide a more accurate model of the three-dimensional structure of the M. tuberculosis catalase-peroxidase, we have crystallized the enzyme and now report its crystal structure refined to 2.4-Å resolution. The structure reveals new information about dimer assembly and provides information about the location of residues that may play a role in catalysis including candidates for protein-based radical formation. Modeling and computational studies suggest that the binding site for isoniazid is located near the ␦-meso heme edge rather than in a surface loop structure as currently proposed. The availability of a crystal structure for the M. tuberculosis catalase-peroxidase also permits structural and functional effects of mutations implicated in causing elevated levels of isoniazid resistance in clinical isolates to be interpreted with improved confidence.
Inherent flexibility and conformational heterogeneity in proteins can often result in the absence of loops and even entire domains in structures determined by x-ray crystallographic or NMR methods. X-ray solution scattering offers the possibility of obtaining complementary information regarding the structures of these disordered protein regions. Methods are presented for adding missing loops or domains by fixing a known structure and building the unknown regions to fit the experimental scattering data obtained from the entire particle. Simulated annealing was used to minimize a scoring function containing the discrepancy between the experimental and calculated patterns and the relevant penalty terms. In low-resolution models where interface location between known and unknown parts is not available, a gas of dummy residues represents the missing domain. In high-resolution models where the interface is known, loops or domains are represented as interconnected chains (or ensembles of residues with spring forces between the C(alpha) atoms), attached to known position(s) in the available structure. Native-like folds of missing fragments can be obtained by imposing residue-specific constraints. After validation in simulated examples, the methods have been applied to add missing loops or domains to several proteins where partial structures were available.
SummaryObjectivesTo describe a successful mentoring scheme designed for mid-career clinician scientists and to examine factors associated with mentee report of positive career impact.DesignMixed methods study including in-depth interviews and cross-sectional data collection via an online survey.SettingAcademy of Medical Sciences mentoring scheme set up in 2002 and evaluated in 2010.ParticipantsOne hundred and forty-seven of 227 mentees took part in the study (response rate of 65%). Ten mentees, three mentors and eight stakeholders/scheme staff were selected to participate in in-depth interviews.Main outcome measuresQualitative data: Interviews were transcribed, and free text was analysed to identify themes and subthemes in the narrative. Quantitative data: We examined the associations of reported positive career impact of mentoring by performing simple and multiple logistic regression analysis.ResultsMentoring success was determined by a variety of factors including reasons for selection (e.g. presence of a personal recommendation), mentee characteristics (e.g. younger age), experience and skills of the mentor (e.g. ‘mentor helped me to find my own solutions’) and the quality of the relationship (e.g. ‘my mentor and I set out clear expectations early on’).ConclusionsOur evaluation demonstrates that both mentor and mentee value mentoring and that careful planning of a scheme including preparation, training and ongoing support of both mentor and mentee addressing expectations, building rapport and logistics are likely to be helpful in ensuring success and benefit from the intervention.
There is an urgent need to understand the mechanism of activation of the frontline anti-tuberculosis drug isoniazid by the Mycobacterium tuberculosis catalase-peroxidase. To address this, a combination of NMR spectroscopic, biochemical, and computational methods have been used to obtain a model of the frontline anti-tuberculosis drug isoniazid bound to the active site of the class III peroxidase, horseradish peroxidase C. This information has been used in combination with the new crystal structure of the M. tuberculosis catalase-peroxidase to predict the mode of INH binding across the class I heme peroxidase family. An enzyme-catalyzed mechanism for INH activation is proposed that brings together structural, functional, and spectroscopic data from a variety of sources. Collectively, the information not only provides a molecular basis for understanding INH activation by the M. tuberculosis catalase-peroxidase but also establishes a new conceptual framework for testing hypotheses regarding the enzyme-catalyzed turnover of this compound in a number of heme peroxidases.
CYP101 (cytochrome P450 cam ) catalyses the oxidation of camphor but has also been shown to catalyse the reductive dehalogenation of hexachloroethane and pentachloroethane. This reaction has potential applications in the biodegradation of these environmental contaminants. The hexachloroethane dehalogenation activity of CYP101 has been investigated by mutagenesis. The effects of active-site polarity and volume were probed by combinations of active-site mutations. Increasing the active-site hydrophobicity by the Y96A and Y96F mutations strengthened hexachloroethane binding but decreased the rate of reaction. Increasing the polarity with the F87Y mutation drastically weakened hexachloroethane binding but did not affect the rate of reaction. The Y96H mutation had little effect at pH 7.4, but weakened hexachloroethane binding while increasing the rate of dehalogenation by up to 40% at pH 6.5, suggesting that the imidazole side-chain was partially protonated at pH 6.5 but not at pH 7.4. Substitutions by bulkier side-chains at F87, T101 and V247 weakened hexachloroethane binding but increased the dehalogenation rate. The effect of the individual mutations was additive in multiple mutants, and the most active mutant for hexachloroethane reductive dehalogenation at pH 7.4 was F87W±V247L (80 min 21 or 2.5 Â the activity of the wild-type). The results suggested that the CYP101 active site shows good match with hexachloroethane, the Y96 side-chain plays an important role in both hexachloroethane binding and dehalogenation, and hexachloroethane binding and dehalogenation places conflicting demands on active-site polarity and compromises were necessary to achieve reasonable values for both.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.