e success of deep learning depends on nding an architecture to t the task. As deep learning has scaled up to more challenging tasks, the architectures have become di cult to design by hand.is paper proposes an automated method, CoDeepNEAT, for optimizing deep learning architectures through evolution. By extending existing neuroevolution methods to topology, components, and hyperparameters, this method achieves results comparable to best human designs in standard benchmarks in object recognition and language modeling. It also supports building a real-world application of automated image captioning on a magazine website. Given the anticipated increases in available computing power, evolution of deep networks is promising approach to constructing deep learning applications in the future.
Abstract. In this paper we examine ensemble methods for regression that leverage or "boost" base regressors by iteratively calling them on modified samples. The most successful leveraging algorithm for classification is AdaBoost, an algorithm that requires only modest assumptions on the base learning method for its strong theoretical guarantees. We present several gradient descent leveraging algorithms for regression and prove AdaBoost-style bounds on their sample errors using intuitive assumptions on the base learners. We bound the complexity of the regression functions produced in order to derive PAC-style bounds on their generalization errors. Experiments validate our theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.