Cloud Computing provides an optimal infrastructure to utilise and share both computational and data resources whilst allowing a pay-per-use model, useful to cost-effectively manage hardware investment or to maximise its utilisation. Cloud Computing also offers transitory access to scalable amounts of computational resources, something that is particularly important due to the time and financial constraints of many user communities. The growing number of communities that are adopting large public cloud resources such as Amazon Web Services [1] or Microsoft Azure [2] proves the success and hence usefulness of the Cloud Computing paradigm. Nonetheless, the typical use cases for public clouds involve non-business critical applications, particularly where issues around security of utilization of applications or deposited data within shared public services are binding requisites. In this paper, a use case is presented illustrating how the integration of Trusted Computing technologies into an available cloud infrastructure-Eucalyptusallows the security-critical energy industry to exploit the flexibility and potential economical benefits of the Cloud Computing paradigm for their business-critical applications.
The concept of resilience has emerged recently in scientific discourse. Different notions of the term resilience used in scientific disciplines are outlined and consequently explored with regard to how the concept can be applied to energy systems. The major questions to be addressed are: Which definitions and underlying concepts of resilience are used in the scientific literature? How can resilience be defined with respect to energy systems and which underlying principles can be identified? Building on this understanding characteristics of the resilience concept used in various contexts are described and a methodology for selection of an indicator set for an energy resilience assessment is presented. The methodology for a resilience assessment outlined in this paper requires definition and clustering of a set of indicators describing a resilient system. It contributes to understanding system properties and supports the theory of how to improve system resilience
Abstract--Current changes in the European electricity industry are driven by regulatory directives to reduce greenhouse gas emissions, at the same time as replacing aged infrastructure and maintaining energy security. There is a wide acceptance of the requirement for smarter grids to support such changes and accommodate variable injections from renewable energy sources. However the design templates are still emerging to manage the level of information required to meet challenges such as balancing, planning and market dynamics under this new paradigm. While secure and scalable cloud computing architectures may contribute to supporting the informatics challenges of the smart grid, this paper focuses on the essential need for business alignment with standardised information models such as the IEC Common Information Model (CIM), to leverage data value and control system interoperability. In this paper we present details of use cases being considered by National Grid, the GB transmission system operator for information interoperability in pan-network system management and planning.Index Terms-Common Information Model, Interoperability, Power system management, Smart grid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.