The Wellington Fault is one of the major active right-lateral strike-slip faults of the southern North Island and represents a significant seismic hazard to the greater Wellington region. Trench excavations across the fault in the Long Gully/Karori Reservoir area and near Kaitoke, along with Quaternary stratigraphic and soil studies at Te Mania, indicate that the most recent surface rupture event along the southern portion of the Wellington Fault was 300-450 cal B .P. (calendar years before A.D. 1950) and the next oldest event was 670-830 cal B.P. The elapsed time between these two events is 220-530 years. Based on the previously reported 6.0-7.6 mm/yr, long-term (c. 140 ka), average, horizontal slip rate calculated at Emerald Hill, and the 3.2-4.7 m single-event offsets (the five most recent events) measured at Te Marua, the average recurrence interval for this portion of the Wellington Fault is 420-780 years.At the Long Gully trench site, two stream channels are laterally displaced by c. 50 m. Displacement has resulted in the ponding of the streams behind an uphill-facing bedrock scarp. The ponding began about 10 ka, as inferred from the age of the oldest organic material exposed in the trench excavations. The average lateral slip rate in the Long Gully area is thus c. 5 mm/yr. Recent surface fault movements at Long Gully, Te Mania, and Kaitoke have similar timings, suggesting that the 75 km long section of the Wellington Fault extending from Cook Strait to Kaitoke comprises a single fault-rupture segment: the Wellington -Hutt Valley Segment.
The Conway Segment of the dextral-slip Hope Fault is one of the fastest slipping fault segments along New Zealand's plate boundary, but has not ruptured co-seismically in the historic period and little paleoseismic data exist to constrain its large earthquake record. Two paleoseismic trenches were opened adjacent to Greenburn Stream near Kaikoura for the 2001 ILP Paleoseismology Conference. Both trenches were excavated into deposits ponded against an uphill-facing shutter scarp. Trench 1, dug through a cobbly soil and surface deposit was dominated by a thick fan/fluvial sequence that was radiocarbon dated at 4409 ± 60 C 14 years BP (4844-5288 cal years BP) at the base of the trench. This trench exhibited evidence of complex deformation from many paleoseismic events. The most recent earthquakes are difficult to constrain due to a lack of cover stratigraphy on the fan deposits. However, the modern soil appears to be faulted and is covered by cobbles with a weathering rind-derived age of 220 ± 60 years. Trench 2, dug 50 m to the west has an expanded sequence of the younger cover deposits. Paleoseismic event horizons have been recognised from the combined evidence of upwardterminating faults, offset and mismatched units, a sandblow deposit, and abrupt landscape change shown by the burial of paleosol surfaces that form the event horizons. Two paleosols underlying the modern soil are clearly faulted by two separate rupture events. A dome of sand interpreted as a liquefaction sandblow deposit overlies the lower paleosol (event horizon). Both paleosols are overlain by metre-thick debris deposits, interpreted as earthquake-induced rock avalanches that cascaded off the hillslope following Mw 7 + events. Four radiocarbon dates place some constraints on the timing of the three recent surface-rupturing events. The youngest and lowest date is 548 ± 60 C 14 years BP (504-656 cal years BP) and occurs below the lower paleosol. It constrains the maximum duration of time in which the last 2 earthquake events occurred to be 545 years (1295-1840 A.D.). This is consistent with the average Recurrence Interval (RI) of 180-310 years that we determine using two independent paths. The soil record indicates that each event is separated by a significant period of time, comparable to the calculated RI. The most recent event is constrained between ca. 1780 A.D. ± 60 years, taking into account the dates from these trenches, a weathering rind age, and from stratigraphic correlation at the site. Event III probably occurred before 1220 A.D. A maximum dextral slip rate of 23 ± 4 mm/yr is calculated from the minimum fan age and the offset/deflection of a stream channel along the shutter ridge. In concert with the estimate of single event displacement (5-6 m), these results show that the Conway Segment of the Hope Fault is fast-slipping and has ruptured regularly as a result of large earthquakes prior to the European colonisation of New Zealand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.