Previously, a complete genome analysis of Neisseria meningitidis strain MC58 revealed the largest repertoire of putative phase-variable genes described in any species to date. Initial comparisons with two incomplete Neisseria spp. genome sequences available at that time revealed differences in the repeats associated with these genes in the form of polymorphisms, the absence of the potentially unstable elements in some alleles, and in the repertoire of the genes that were present. Analyses of the complete genomes of N. meningitidis strain Z2491 and Neisseria gonorrhoeae strain FA1090 have been performed and are combined with a comprehensive comparative analysis between the three available complete genome sequences. This has increased the sensitivity of these searches and provided additional contextual information that facilitates the interpretation of the functional consequences of repeat instability. This analysis identified : (i) 68 phase-variable gene candidates in N. meningitidis strain Z2491, rather than the 27 previously reported ; (ii) 83 candidates in N. gonorrhoeae strain FA1090 ; and (iii) 82 candidates in N. meningitidis strain MC58, including an additional 19 identified through cross-comparisons with the other two strains. In addition to the 18 members of the opa gene family, a repertoire of 119 putative phase-variable genes is described, indicating a huge potential for diversification mediated by this mechanism of gene switching in these species that is central to their interactions with the host and environmental transitions. Eighty-two of these are either known (14) or strong (68) candidates for phase variation, which together with the opa genes make a total of 100 identified genes. The repertoires of the genes identified in this analysis diverge from the different species groupings, indicating horizontal exchange that significantly affects the species and strain complements of these genes.Keywords : phase variation, Neisseria gonorrhoeae, Neisseria meningitidis, repeat, genome analysis INTRODUCTIONThe pathogenic Neisseria spp. Neisseria meningitidis and Neisseria gonorrhoeae are causative agents of meningitis and septicaemia, and gonorrhoea respectively. These populations are characterized by genetic diversity at several levels. over time to the rest of the population (Bowler et al., 1994 ;Feil et al., 1995 ;Saunders et al., 1999). There is extensive allelic diversity in some genes, particularly those under antigenic selection pressures (Malorny et al., 1998). There are genes within a strain that undergo recombination between expressed and silent cassettes to generate diversity within clonal populations (Haas & Meyer, 1987). Finally, there are genes that are switched on and off by phase variation that can provide a large repertoire of phenotypes from within a clonal population, which can provide adaptation to changing environmental conditions (Sparling et al., 1986 ; Stern A. BUTCHER and N. J. SAUNDERS et al., 1986 ;Meyer & van Putten, 1989 ;Yang & Gotschlich, 1996 ;Saunders et al., 2000). In N...
Phase variation is a common mechanism used by pathogenic bacteria to generate intra-strain diversity that is important in niche adaptation and is strongly associated with virulence determinants. Previous analyses of the complete sequences of the Helicobacter pylori strains 26695 and J99 have identified 36 putative phase-variable genes among the two genomes through their association with homopolymeric tracts and dinucleotide repeats. Here a comparative analysis of the two genomes is reported and an updated and expanded list of 46 candidate phase-variable genes in H. pylori is described. These have been systematically investigated by PCR and sequencing for the presence of the genes, and the presence and variability in length of the repeats in strains 26695 and J99 and in a collection of unrelated H. pylori strains representative of the main global subdivisions recently suggested. This provides supportive evidence for the phase variability of 30 of the 46 candidates. Other differences in this subset of genes were observed (i) in the repeats, which can be present or absent among the strains, or stabilized in different strains and (ii) in the gene-complements of the strains. Differences between genes were not consistently correlated with the geographic population distribution of the strains. This study extends and provides new evidence for variation of this type in H. pylori, and of the high degree of diversity of the repertoire of genes which display phase-variable switching within individual strains.
Transplants tolerated through a process known as infectious tolerance evoke continuous recruitment of regulatory T (Treg) cells that are necessary to maintain the unresponsive state. This state is maintained long-term and requires continuous Ag exposure. It is not known, however, whether infectious tolerance operates through sustained recruitment of pre-existing regulatory cells, induction of regulatory cells, or both. Using mice deficient in natural Treg cells, we show here that quiescent donor dendritic cells (DC) laden with histocompatibility Ag can induce Treg cells de novo that mediate transplantation tolerance. In contrast, fully activated DC fail to do so. These findings suggest that DC incapable of delivering full activation signals to naive T cells may favor their polarization toward a regulatory phenotype. Furthermore, they suggest a role for quiescent endogenous DC in the maintenance of the tolerant state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.