Can New Zealand's indigenous dryland ecosystems be rehabilitated by facilitating inherent successional tendencies to enhance development of indigenous-dominated and often woody communities in the long term? here, we describe the geographic distribution of woody communities of New Zealand's South island drylands to generate hypotheses about successional trajectories to future vegetation states. Presences and absences of woody species in 3880 vegetation plots collated from past surveys were used to predict species potential distributions across drylands. Separate models and spatial predictions were built for each of four classes of woody richness, which were used as surrogates for successional stages. Woody species richness increased significantly from grassland to shrubland and from shrubland to forest cover, and trends in species traits also suggest richness class was related with successional stage. indigenous woody species outnumbered exotic species in all richness classes. assuming richness classes represent temporal progressions, our results suggest relatively homogeneous early-successional woody associations succeed to a divergent array of woody associations in different environments. growth forms of species in our predicted associations suggest transitions from grassland to tall, tree-rich forests in northern and coastal drylands, and to liane-rich open or lightcanopied shrubland, woodland, or low forest in more severe inland environments. These putative communities are novel in species composition but physiognomically broadly similar to pre-settlement analogues. especially in severe inland environments, unassisted transitions from grassland to indigenousdominated late-successional woody communities may depend on the exclusion of tall exotic trees, Scotch broom, and gorse in early succession.
a b s t r a c tEroding coastlines composed of sequences of till, carbon rich peat and sand layers are characteristic of many formerly glaciated coastlines due to the interplay of relative land and sea levels. Dune cliffs cut into these materials represent one of the most sensitive systems to the processes of coastal change. Establishing appropriate scales for the quantification and analysis of change in coastal dune cliffs remains limited by the speed and nature of change, the intensity of environmental processes and the challenges of achieving adequate survey control. This paper presents the results from multi-scale analyses into the behaviour of dune cliffs on the northeast coast, UK, over a 118 year period. Repeat unmanned aerial vehicle (UAV) survey differences have been used to identify and quantify system behaviour, set in context with historic map comparisons. At the landform scale, monthly dune cliff dynamics have been analysed over the course of a year with terrestrial laser scanning (TLS) in order to gain insights into the drivers of contemporary dune cliff behaviour. Finally, pseudo three-dimensional ground-penetrating radar (GPR) data are used to trace subsurface stratigraphy from which the potential extent of stored carbon (in excess of 100 t over 50 m of monitored dune cliff) at risk of release by coastal erosion over the next 50 years can be calculated. The consideration of multi-scale changes over time periods relevant to well-constrained sea level change has revealed a complex combination of failure mechanisms that have resulted in an acceleration in dune cliff recession (particularly over the last decade) and a form change to shallower, divergent profiles. This potential acceleration in contemporary dune cliff response holds significant implications for both coastal management and the contribution of this poorly quantified input to the coastal carbon flux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.