Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. We thank Drs. D. Stephen Snyder and Marilyn Miller from NIA who are ex-officio ADGC members. EADI. This work has been developed and supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer's disease) including funding from MEL (Metropole européenne de Lille), ERDF (European Regional Development Fund) and Conseil Régional Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of GWAS genotype data for the Rotterdam Study (RS-I, RS-II, RS-III) was executed by the Human Genotyping Facility of the Genetic Laboratory of the
We sought to identify new susceptibility loci for Alzheimer’s disease (AD) through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer’s Disease Genetic Consortium (ADGC). First, we undertook a combined analysis of four genome-wide association datasets (Stage 1) and identified 10 novel variants with P≤1×10−5. These were tested for association in an independent sample (Stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (Stage 3). Meta-analyses of all data provide compelling evidence that ABCA7 (meta-P 4.5×10−17; including ADGC meta-P=5.0×10−21) and the MS4A gene cluster (rs610932, meta-P=1.8×10−14; including ADGC meta-P=1.2×10−16; rs670139, meta-P=1.4×10−9; including ADGC meta-P=1.1×10−10) are novel susceptibility loci for AD. Second, we observed independent evidence for association for three suggestive loci reported by the ADGC GWAS, which when combined shows genome-wide significance: CD2AP (GERAD+ P=8.0×10−4; including ADGC meta-P=8.6×10−9), CD33 (GERAD+ P=2.2×10−4; including ADGC meta-P=1.6×10−9) and EPHA1 (GERAD+ P=3.4×10−4; including ADGC meta-P=6.0×10−10). These findings support five novel susceptibility genes for AD.
Angiotensin-converting enzyme-2 (ACE2) is a critical regulator of heart function and a cellular receptor for the causative agent of severe-acute respiratory syndrome (SARS), SARS-CoV (coronavirus). ACE2 is a type I transmembrane protein, with an extracellular N-terminal domain containing the active site and a short intracellular C-terminal tail. A soluble form of ACE2, lacking its cytosolic and transmembrane domains, has been shown to block binding of the SARS-CoV spike protein to its receptor. In this study, we examined the ability of ACE2 to undergo proteolytic shedding and investigated the mechanisms responsible for this shedding event. We demonstrated that ACE2, heterologously expressed in HEK293 cells and endogenously expressed in Huh7 cells, undergoes metalloproteinase-mediated, phorbol ester-inducible ectodomain shedding. By using inhibitors with differing potency toward different members of the ADAM (a disintegrin and metalloproteinase) family of proteases, we identified ADAM17 as a candidate mediator of stimulated ACE2 shedding. Furthermore, ablation of ADAM17 expression using specific small interfering RNA duplexes reduced regulated ACE2 shedding, whereas overexpression of ADAM17 significantly increased shedding. Taken together, these data provided direct evidence for the involvement of ADAM17 in the regulated ectodomain shedding of ACE2. The identification of ADAM17 as the protease responsible for ACE2 shedding may provide new insight into the physiological roles of ACE2.
A novel human zinc metalloprotease that has considerable homology to human angiotensin-converting enzyme (ACE) (40% identity and 61% similarity) has been identified. This metalloprotease (angiotensin-converting enzyme homolog (ACEH)) contains a single HEXXH zinc-binding domain and conserves other critical residues typical of the ACE family. The predicted protein sequence consists of 805 amino acids, including a potential 17-amino acid N-terminal signal peptide sequence and a putative C-terminal membrane anchor. Expression in Chinese hamster ovary cells of a soluble, truncated form of ACEH, lacking the transmembrane and cytosolic domains, produces a glycoprotein of 120 kDa, which is able to cleave angiotensin I and angiotensin II but not bradykinin or Hip-His-Leu. In the hydrolysis of the angiotensins, ACEH functions exclusively as a carboxypeptidase. ACEH activity is inhibited by EDTA but not by classical ACE inhibitors such as captopril, lisinopril, or enalaprilat. Identification of the genomic sequence of ACEH has shown that the ACEH gene contains 18 exons, of which several have considerable size similarity with the first 17 exons of human ACE. The gene maps to chromosomal location Xp22. Northern blotting analysis has shown that the ACEH mRNA transcript is ϳ3.4 kilobase pairs and is most highly expressed in testis, kidney, and heart. This is the first report of a mammalian homolog of ACE and has implications for our understanding of cardiovascular and renal function.
In the RAS (renin-angiotensin system), Ang I (angiotensin I) is cleaved by ACE (angiotensin-converting enzyme) to form Ang II (angiotensin II), which has effects on blood pressure, fluid and electrolyte homoeostasis. We have examined the kinetics of angiotensin peptide cleavage by full-length human ACE, the separate N- and C-domains of ACE, the homologue of ACE, ACE2, and NEP (neprilysin). The activity of the enzyme preparations was determined by active-site titrations using competitive tight-binding inhibitors and fluorogenic substrates. Ang I was effectively cleaved by NEP to Ang (1-7) (kcat/K(m) of 6.2x10(5) M(-1) x s(-1)), but was a poor substrate for ACE2 (kcat/K(m) of 3.3x10(4) M(-1) x s(-1)). Ang (1-9) was a better substrate for NEP than ACE (kcat/K(m) of 3.7x10(5) M(-1) x s(-1) compared with kcat/K(m) of 6.8x10(4) M(-1) x s(-1)). Ang II was cleaved efficiently by ACE2 to Ang (1-7) (kcat/K(m) of 2.2x10(6) M(-1) x s(-1)) and was cleaved by NEP (kcat/K(m) of 2.2x10(5) M(-1) x s(-1)) to several degradation products. In contrast with a previous report, Ang (1-7), like Ang I and Ang (1-9), was cleaved with a similar efficiency by both the N- and C-domains of ACE (kcat/K(m) of 3.6x10(5) M(-1) x s(-1) compared with kcat/K(m) of 3.3x10(5) M(-1) x s(-1)). The two active sites of ACE exhibited negative co-operativity when either Ang I or Ang (1-7) was the substrate. In addition, a range of ACE inhibitors failed to inhibit ACE2. These kinetic data highlight that the flux of peptides through the RAS is complex, with the levels of ACE, ACE2 and NEP dictating whether vasoconstriction or vasodilation will predominate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.