In recent decades, reinforcement learning (RL) has been widely used in different research fields ranging from psychology to computer science. The unfeasibility of sampling all possibilities for continuous-state problems and the absence of an explicit teacher make RL algorithms preferable for supervised learning in the machine learning area, as the optimal control problem has become a popular subject of research. In this study, a system is proposed to solve mobile robot navigation by opting for the most popular two RL algorithms, Sarsa(λ) and Q(λ). The proposed system, developed in MATLAB, uses state and action sets, defined in a novel way, to increase performance. The system can guide the mobile robot to a desired goal by avoiding obstacles with a high success rate in both simulated and real environments. Additionally, it is possible to observe the effects of the initial parameters used by the RL methods, e.g., λ , on learning, and also to make comparisons between the performances of Sarsa(λ) and Q(λ) algorithms.
Robots are an important part of urban search and rescue tasks. World wide attention has been given to developing capable physical platforms that would be beneficial for rescue teams. It is evident that use of multi-robots increases the effectiveness of these systems. The Robot Operating System (ROS) is becoming a standard platform for the robotics research community for both physical robots and simulation environments. Gazebo, with connectivity to the ROS, is a three-dimensional simulation environment that is also becoming a standard. Several simultaneous localization and mapping algorithms are implemented in the ROS; however, there is no multi-robot mapping implementation. In this work, two multi-robot mapping algorithm implementations are presented, namely multi-robot gMapping and multi-robot Hector Mapping. The multi-robot implementations are tested in the Gazebo simulation environment. Also, in order to achieve a more realistic simulation, every incremental robot movement is modeled with rotational and translational noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.