A computer-based intelligent visual inspection system plays a major role in evaluating the quality of textile fabrics and its demand is continuously increasing in the textile industry, especially when the quality of textile is to be considered. In this paper, we propose an AI-based automated fabric defect detection algorithm which utilizes pre-trained deep neural network models for classifying possible fabric defects. The fabric images are enhanced by pre-processing at various levels using conventional image processing techniques and they are used to train the networks. The Deep Convolutional Neural Network (DCNN) and a pre-trained network, AlexNet, are used to train and classify various fabric defects. With the exiting textile dataset, a maximum classification accuracy of 92.60% is achieved in the conducted simulations. With this accuracy, the detection and classification system based on this classifier model can aid the human to find faults in the fabric manufacturing unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.