In this study, the physical and mechanical behaviors of geopolymers prepared by using different amounts of silica fume and calcium hydroxide as binding materials, acidic pumice as fine aggregate and waste aluminium particles as air-entraining agent were investigated. Test results showed that binder types, amount of binders and alkali activator (sodium hydroxide) significantly affected the physical and mechanical behavior of geopolymer specimens. Bulk density, compressive and flexural strength decreased with the higher alkali activator content. Addition of waste aluminium particles led to decrease in bulk density and strength due to the some extent of entrained air. In the case of same alkali activator content, compressive and flexural strength increased with increase in silica fume and calcium hydroxide up to a certain level.
Conventional portland cement has found worldwide usage in the production of cementitious materials in recent years. Nevertheless, environmental problems such as high demand of raw materials, energy consumption and high amount of carbon dioxide emission take place before and during manufacturing process. The attempts have been made to seek alternative binders and develop supplementary materials for construction sector. Therefore, this study reports the results of an experimental program on the comparison of geopolymers with different compositions in terms of evaluating their physical and mechanical behavior. For that purpose, the effect of binder types and amount of binders and alkali activator (sodium hydroxide) was investigated. In addition, acidic pumice and waste aluminium particles were also used as fine aggregate and air entraining agent, respectively, in geopolymer production. The test results revealed that as the content of alkali activator increased, compressive and flexural strength decreased. Addition of waste aluminium particles decreased bulk density and strength owing to the some extent of entrained air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.